Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hà Ngọc Điệp
Xem chi tiết
Yukki Asuna
Xem chi tiết
Nguyễn Thị Thanh	Dung
Xem chi tiết
SuSu
Xem chi tiết
Nguyễn Minh Thịnh
27 tháng 12 2018 lúc 18:53

Đặt A=\(\dfrac{1}{1.2.3}\)+\(\dfrac{1}{2.3.4}\)+\(\dfrac{1}{3.4.5}\)+...+\(\dfrac{1}{n\left(n+1\right)\left(n+2\right)}\)

=>2A=\(\dfrac{2}{1.2.3}\)+\(\dfrac{2}{2.3.4}\)+...+\(\dfrac{2}{n\left(n+1\right)\left(n+2\right)}\)

=\(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\)\(\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\)

=\(\dfrac{1}{2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\)

=\(\dfrac{\left(n+1\right)\left(n+2\right)-2}{2\left(n+1\right)\left(n+2\right)}\)

=\(\dfrac{n^2+3n}{2\left(n^2+3n+2\right)}\)

=>A=\(\dfrac{n^2+3n}{4n^2+12n+8}\)

Kirigaya Kazuto
Xem chi tiết
Hoang Hung Quan
7 tháng 2 2017 lúc 17:43

\(A=\frac{5}{2.1}+\frac{4}{1.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)

\(\frac{A}{7}=\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)

\(\frac{A}{7}=\frac{7-2}{2.7}+\frac{11-7}{7.11}+\frac{14-11}{11.4}+\frac{15-14}{14.15}+\frac{28-15}{15.28}\)

\(\frac{A}{7}=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}=\frac{1}{2}-\frac{1}{28}=\frac{13}{28}\)

\(A=7.\frac{13}{28}\)

\(A=\frac{13}{4}\)

Bui Quoc Huy
Xem chi tiết
nguyen tuan anh
Xem chi tiết
ghrththth
Xem chi tiết
Nguyễn Võ Thảo Vy
9 tháng 12 2017 lúc 20:10

B=1/2.1.2-1/2.2.3+1/2.2.3-1/2.3.4+...+1/2n(n+1)-1/2(n+1)(n+2)

B=1/2[(1/1.2+1/2.3+...+1/n(n+1))-(1/2.3+1/3.4+...+1/(n+1)(n+2))]

Tới đây bạn tự làm tiếp nha, tương tự như bài 1/1.2+1/2.3+..+1/n(n+1) á bạn.Cái này bạn ghi ra bạn sẽ hiểu, mình viết hơi bị lủng củng.

Team_Flash 1
Xem chi tiết
Bùi Anh Tuấn
18 tháng 11 2019 lúc 20:18

Ta có

\(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)   và \(\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n}-\frac{1}{n+1}-\frac{1}{n+2}\)  nên

\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{n\left(n+1\right)}+...+\frac{1}{2008\cdot2009}=1-\frac{1}{2009}=\frac{2008}{2009}\)

\(2B=\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}+...+\frac{2}{2008\cdot2009\cdot2010}\)

\(=\frac{1}{1\cdot2}-\frac{1}{2009\cdot2010}=\frac{201944}{2009\cdot2010}\)

\(\Rightarrow B=\frac{1}{2}\cdot\frac{201944}{2009\cdot2010}=\frac{1009522}{2009\cdot2010}\)

Do đó \(\frac{B}{A}=\frac{1009522}{2009\cdot2010}:\frac{2008}{2009}=\frac{1009522\cdot2009}{2008\cdot2009\cdot2010}=\frac{5047611}{2018040}\)

Khách vãng lai đã xóa
Trần Đại Nghĩa
Xem chi tiết
Mike
13 tháng 6 2020 lúc 12:22

A = 1.2.3 + 2.3.4 + 3.4.5 ... + n(n + 1)(n + 2)

4A = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + ... + n(n + 1)(n + 2).4

4A = 1.2.3.4 + 2.3.4(5 - 1) + 3.4.5.(6 - 2)+ ... + n(n + 1)(n + 2)[(n + 3) - (n - 1)]

4A = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ... + n(n + 1)(n + 2)(n + 3) - (n-1)n(n+1)(n+2)

4A = n(n+1)(n+2)(n+3)

A = n(n + 1)(n+2)(n + 3) : 4

Khách vãng lai đã xóa