So sánh
A=\(\frac{2005^{2014}+1}{2005^{2015}+1}\)
với
B=\(\frac{2005^{2015}+1}{2005^{2016}+1}\)
So sánh: A=2005^2005+1/2005^2006+1và B=2015^2014+1/2005^2005+1
So sánh: \(A=\frac{2015^{2005}+1}{2005^{2006}+1}\) và \(B=\frac{2005^{2004}+1}{2005^{2005}+1}\)
Giúp với Toán 6 đó!
A=\(\frac{2005^{2005}+1}{2005^{2006}+1}\) < 1 => \(\frac{2005^{2005}+1}{2005^{2006}+1}\) < \(\frac{2005^{2005}+1+2004}{2005^{2006}+1+2004}\) = \(\frac{2005^{2005}+2005}{2005^{2006}+2005}\)= \(\frac{2005.\left(2005^{2004}+1\right)}{2005.\left(2005^{2005}+1\right)}\) = \(\frac{2005^{2004}+1}{2005^{2005}+1}\) = B => A<B.
Ta thấy:A=\(\frac{2005^{2005+1}}{2005^{2006}+1}\)<1
Ta có:A=\(\frac{2005^{2005}+1}{2005^{2006}+1}\)<\(\frac{2005^{2005}+1+2004}{2005^{2006}+1+2004}\)=\(\frac{2005\left(2005^{2004}+1\right)}{2005\left(2005^{2005}+1\right)}\)=b
Vậy A<B
Chắc chắn 100%
so sánh
a=\(\dfrac{2005^{2015}+1}{2005^{2016}+1}\)và b=\(\dfrac{2005^{2016}+1}{2005^{2017}+1}\)
haizzz mk nhớ bài này nhìu người hỏi lắm rồi,chịu khó tìm là thấy
So sánh
a, \(\dfrac{2005^{2014}+1}{2005^{2015}+1}\&\dfrac{2005^{2016}+1}{2005^{2017}+1}\)
b, \(\dfrac{19}{10}\&\dfrac{49}{40}\)
c, \(\dfrac{13}{20}\&\dfrac{33}{40}\)
ồ, lâu h ms gặp
a,
Dễ thấy \(\dfrac{2005^{2016}+1}{2005^{2017}+1}< 1\)
Áp dụng khi \(\dfrac{a}{b}< 1\Rightarrow\dfrac{a}{b}< \dfrac{a+n}{b+n}\left(n\in N^{\circledast}\right)\)
Ta có:
\(\dfrac{2005^{2016}+1}{2005^{2017}+1}< \dfrac{2005^{2016}+1+\left(2005^2-1\right)}{2005^{2017}+1+\left(2005^2-1\right)}=\dfrac{2005^{2016}+2005^2}{2005^{2017}+2005^2}=\dfrac{2005^2\left(2005^{2014}+1\right)}{2005^2\left(2005^{2015}+1\right)}=\dfrac{2005^{2014}+1}{2005^{2015}+1}\)
Vậy \(\dfrac{2005^{2016}+1}{2005^{2017}+1}< \dfrac{2005^{2014}+1}{2005^{2015}+1}\)
b,
\(\dfrac{19}{10}=\dfrac{10+9}{10}=\dfrac{10}{10}+\dfrac{9}{10}=1+\dfrac{9}{10}\\ \dfrac{49}{40}=\dfrac{40+9}{40}=\dfrac{40}{40}+\dfrac{9}{40}=1+\dfrac{9}{40}\)
Vì \(10< 40\Rightarrow\dfrac{9}{10}>\dfrac{9}{40}\Rightarrow1+\dfrac{9}{10}>1+\dfrac{9}{40}\Leftrightarrow\dfrac{19}{10}>\dfrac{49}{40}\)Vậy \(\dfrac{19}{10}>\dfrac{49}{40}\)
c,
\(\dfrac{13}{20}=\dfrac{20-7}{20}=\dfrac{20}{20}-\dfrac{7}{20}=1-\dfrac{7}{20}\\ \dfrac{33}{40}=\dfrac{40-7}{40}=\dfrac{40}{40}-\dfrac{7}{40}=1-\dfrac{7}{40}\)
Vì \(20< 40\Rightarrow\dfrac{7}{20}>\dfrac{7}{40}\Rightarrow1-\dfrac{7}{20}< 1-\dfrac{7}{40}\Leftrightarrow\dfrac{13}{20}< \dfrac{33}{40}\)
Vậy \(\dfrac{13}{20}< \dfrac{33}{40}\)
Áp dụng tính chất:
\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)
\(\)Đặt: \(B=\dfrac{2005^{2016}+1}{2005^{2017}+1}< 1\)
\(\Rightarrow B< \dfrac{2005^{2016}+1+4020024}{2005^{2017}+1+4020024}\)
\(B< \dfrac{2005^{2016}+4020025}{2005^{2017}+4020025}\)
\(B< \dfrac{2005^2\left(2005^{2014}+1\right)}{2005^2\left(2005^{2015}+1\right)}\)
\(B< \dfrac{2005^{2014}+1}{2005^{2015}+1}=A\)
\(B< A\)
so sánh
\(\frac{100^{2015^{ }}+1}{100^{2005}+1}\) và\(\frac{100^{2016}+1}{100^{2006}+1}\)
\(\frac{100^{2015}+1}{100^{2015}+1}=1\)
\(\frac{100^{2016}+1}{100^{2016}+1}=1\)
Vì 1 = 1 nên \(\frac{100^{2015}+1}{100^{2015}+1}=\frac{100^{2016}+1}{100^{2016}+1}\)
à mình nhìn nhầm đề
Mình giải nha
Đặt \(A=\frac{100^{2015}+1}{100^{2005}+1}\Rightarrow\frac{A}{100^{10}}=\frac{100^{2015}+1}{100^{2015}+100^{10}}=\frac{100^{2015}+100^{10}-999}{100^{2015}+100^{10}}=1-\frac{999}{100^{2015}+100^{10}}\)
Đặt \(B=\frac{100^{2016}+1}{100^{2006}+1}\Rightarrow\frac{B}{100^{10}}=\frac{100^{2016}+100^{10}-999}{100^{2016}+100^{10}}=1-\frac{999}{100^{2016}+100^{10}}\)
\(1-\frac{999}{100^{2015}+100^{10}}< 1-\frac{999}{100^{2016}+100^{10}}\Rightarrow A< B\)
Rõ ràng\(\frac{100^{2016}+1}{100^{2006}+1}\)<1 nên theo tính chất khi \(\frac{a}{b}\)< 1 => \(\frac{a}{b}\)<\(\frac{a+m}{b+m}\) => \(\frac{100^{2016}+1}{100^{2006}+1}\)<\(\frac{100^{2016}+1+99}{100^{2006}+1+99}\)
<\(\frac{100^{2016}+100}{100^{2006}+100}\)
=>\(\frac{100^{2016}+1}{100^{2006}+1}\)< \(\frac{100^{2016}+100}{100^{2006}+100}\) = \(\frac{100\left(100^{2015}+1\right)}{100\left(100^{2005}+1\right)}\)= \(\frac{\left(100^{2015}+1\right)}{\left(100^{2005}+1\right)}\)
Vậy\(\frac{100^{2016}+1}{100^{2006}+1}\) < \(\frac{\left(100^{2015}+1\right)}{\left(100^{2005}+1\right)}\)
Cho A = \(\frac{2000}{2001}+\frac{2001}{2002}+\frac{2002}{2003}+\frac{2003}{2004}+\frac{2005}{2006}+\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}\)
Hãy so sánh tổng các phân số trong A và so sánh với 15.
mỗi số hạng trong biểu thức A đều nhỏ hơn 1 mà có 15 số nên tổng A sẽ nhỏ hơn 15
ta thay tong tren <1+1+1+1+1+1+1+1+1+1+1+1+1+1+1
hay tong tren be hon 15
So sánh: \(A=\frac{2005^{2005}+1}{2005^{2006}+1};B=\frac{2005^{2004}+1}{2005^{2005}+1}\)
\(A=\frac{2005^{2005}+1}{2005^{2006}+1}\)
\(\Rightarrow2005A=\frac{2005^{2006}+2005}{2005^{2006}+1}\)
\(\Rightarrow2005A=1+\frac{2004}{2005^{2006}+1}\)
\(B=\frac{2005^{2004}+1}{2005^{2005}+1}\)
\(\Rightarrow2005B=\frac{2005^{2005}+2005}{2005^{2005}+1}\)
\(\Rightarrow2005B=1+\frac{2004}{2005^{2005}+1}\)
Ta thấy \(\frac{2004}{2005^{2005}+1}>\frac{2004}{2005^{2006}+1}\)
Suy ra \(1+\frac{2004}{2005^{2005}+1}>1+\frac{2004}{2005^{2006}+1}\)
hay 2005B>2005A
Vậy B>A
So sánh :A=\(\frac{2005^{2005}+1}{2005^{2006}+1}\)và B=\(\frac{2005^{2004}+1}{2005^{2005}+1}\)
Ta có VẾ A
\(A=\frac{2005^{2005}+1}{2005^{2006}+1}\)
\(2005\cdot A=\frac{2005\cdot\left(2005^{2005}+1\right)}{2005^{2006}+1}\)
\(2005\cdot A=\frac{2005^{2006}+2005}{2005^{2006}+1}\)
\(2005\cdot A=\frac{2005^{2006}+1+2004}{2005^{2006}+1}\)
\(2005\cdot A=1+\frac{2004}{2005^{2006}+1}\)
Ta lại có Vế B :
\(B=\frac{2005^{2004}+1}{2005^{2005}+1}\)
\(2005\cdot B=\frac{2005\cdot\left(2005^{2004}+1\right)}{2005^{2005}+1}\)
\(2005\cdot B=\frac{2005^{2005}+2005}{2005^{2005}+1}\)
\(2005\cdot B=\frac{2005^{2005}+1+2004}{2005^{2005}+1}\)
\(2005\cdot B=1+\frac{2004}{2005^{2005}+1}\)
Nhìn vào trên , suy ra A < B .
\(2005A=\frac{2005\left(2005^{2005}+1\right)}{2005^{2006}+1}=\frac{2005^{2006}+2005}{2005^{2006}+1}=\frac{2005^{2006}+1+2004}{2005^{2006}+1}=\frac{2005^{2006}+1}{2005^{2006}+1}+\frac{2004}{2005^{2006}+1}=1+\frac{2004}{2005^{2006}+1}\)
\(2005B=\frac{2005\left(2005^{2004}+1\right)}{2005^{2005}+1}=\frac{2005^{2005}+2005}{2005^{2005}+1}=\frac{2005^{2005}+1+2014}{2005^{2005}+1}=\frac{2005^{2005}+1}{2005^{2005}+1}+\frac{2014}{2005^{2005}+1}=1+\frac{2014}{2005^{2005}+1}\)Ta thấy \(2005^{2006}+1>2005^{2005}+1\Rightarrow\frac{2004}{2005^{2006}+1}< \frac{2004}{2005^{2005}+1}\Rightarrow1+\frac{2004}{2005^{2006}+1}< 1+\frac{2004}{2005^{2005}+1}\)
\(\Rightarrow A< B\)
So sánh :
\(A=\frac{2005^{2005}+1}{2005^{2006}+1}\)
\(B=\frac{2005^{2004}+1}{2005^{2005}+1}\)