tính N=1-2+22-23+....+22016
Tìm dư của phép chia số A = 22021 + 22022 chia cho B = 1 + 2 + 22 + 23 +....+22016 + 22017
Chứng minh rằng
D = 2 + 22 + 23+................+ 22016 chia hết cho 3 , 7 , 15
A=21+22+23+...+22016
chứng tỏ A chia hết cho 7
\(A=2^1+2^2+2^3+...+2^{2016}\)
\(\Rightarrow A=2\left(1+2^1+2^2\right)+2^4\left(1+2^1+2^2\right)...+2^{2014}\left(1+2^1+2^2\right)\)
\(\Rightarrow A=2.7+2^4.7...+2^{2014}.7\)
\(\Rightarrow A=7\left(2+2^4...+2^{2014}\right)⋮7\)
\(\Rightarrow dpcm\)
Tìm số tự nhiên x biết :
a, 2.(x – 5)+7 = 77
b, x - 1 3 - 3 5 : 3 4 + 2 . 2 3 = 14
c, 1 + 2 + 2 2 + 2 3 + . . . + 2 2016 = 2 x - 1 - 1
d, 5 2 x - 3 - 2 . 5 2 = 5 2 . 3
a, 2.(x – 5)+7 = 77
<=> 2.(x – 5) = 70 <=> x – 5 = 35 <=> x = 40
b, x - 1 3 - 3 5 : 3 4 + 2 . 2 3 = 14
<=> x - 1 3 - 3 + 2 4 = 14
<=> x - 1 3 = 14 + 3 - 16 = 1
<=> x – 1 = 1 <=> x = 2
c, 1 + 2 + 2 2 + 2 3 + . . . + 2 2016 = 2 x - 1 - 1
Đặt: A = 1 + 2 + 2 2 + 2 3 + . . . + 2 2016 => 2A = 2 + 2 2 + 2 3 + . . . + 2 2017
=> 2A – A = ( 2 + 2 2 + 2 3 + . . . + 2 2017 ) – ( 1 + 2 + 2 2 + 2 3 + . . . + 2 2016 )
=> A = 2 2017 - 1
Ta có: 1 + 2 + 2 2 + 2 3 + . . . + 2 2016 = 2 x - 1 - 1 => 2 2017 - 1 = 2 x - 1 - 1 => x = 2018
d, 5 2 x - 3 - 2 . 5 2 = 5 2 . 3
<=> 5 2 x - 3 = 5 2 . 3 + 5 2 . 2
<=> 5 2 x - 3 = 5 2 . ( 3 + 2 )
<=> 5 2 x - 3 = 5 3
<=> 2x – 3 = 3 => x = 3
1 Chứng tỏ rằng
a) A + 1 là 1 luỹ thừa của 2 Biết A = 1 + 2 + 22 + ... + 280
b) 2B - 1 là 1 luỹ thừa của 3 Biết B = 1 + 3 + 32 + ... + 399
2 Tìm số tự nhiên x biết
a) 2x . ( 1 + 2 + 22 + 23 + ... = 22015 ) + 1 = 22016
b) 8x - 1 = 1 + 2 + 22 + 23 + ... + 22015
( giải chi tiết hộ mình với ạ Cảm ơn <3 )
a) \(A=1+2+2^2+...+2^{80}\)
\(2A=2+2^2+2^3+...+2^{81}\)
\(2A-A=2+2^2+2^3+...+2^{81}-1-2-2^2-...-2^{80}\)
\(A=2^{81}-1\)
Nên A + 1 là:
\(A+1=2^{81}-1+1=2^{81}\)
b) \(B=1+3+3^2+...+3^{99}\)
\(3B=3+3^2+3^3+...+3^{100}\)
\(3B-B=3+3^2+3^3+...+3^{100}-1-3-3^2-...-3^{99}\)
\(2B=3^{100}-1\)
Nên 2B + 1 là:
\(2B+1=3^{100}-1+1=3^{100}\)
2)
a) \(2^x\cdot\left(1+2+2^2+...+2^{2015}\right)+1=2^{2016}\)
Gọi:
\(A=1+2+2^2+...+2^{2015}\)
\(2A=2+2^2+2^3+...+2^{2016}\)
\(A=2^{2016}-1\)
Ta có:
\(2^x\cdot\left(2^{2016}-1\right)+1=2^{2016}\)
\(\Rightarrow2^x\cdot\left(2^{2016}-1\right)=2^{2016}-1\)
\(\Rightarrow2^x=\dfrac{2^{2016}-1}{2^{2016}-1}=1\)
\(\Rightarrow2^x=2^0\)
\(\Rightarrow x=0\)
b) \(8^x-1=1+2+2^2+...+2^{2015}\)
Gọi: \(B=1+2+2^2+...+2^{2015}\)
\(2B=2+2^2+2^3+...+2^{2016}\)
\(B=2^{2016}-1\)
Ta có:
\(8^x-1=2^{2016}-1\)
\(\Rightarrow\left(2^3\right)^x-1=2^{2016}-1\)
\(\Rightarrow2^{3x}-1=2^{2016}-1\)
\(\Rightarrow2^{3x}=2^{2016}\)
\(\Rightarrow3x=2016\)
\(\Rightarrow x=\dfrac{2016}{3}\)
\(\Rightarrow x=672\)
B=1 + 1/2 + 1/3 + 1/4 +1/5 + .....+ 1/22016 - 2 + 1/22016 - 1 > 1008
Tính nhanh:5/17 + 1/22 + 2/3 - 23/22 + 12/17
=\(\left(\dfrac{5}{17}+\dfrac{12}{17}\right)+\left(\dfrac{1}{22}-\dfrac{23}{22}\right)+\dfrac{2}{3}\)
=\(\dfrac{17}{17}-\dfrac{22}{22}+\dfrac{2}{3}\)
=\(1-1+\dfrac{2}{3}\)
=0+\(\dfrac{2}{3}\)
=\(\dfrac{2}{3}\)
Tính : 1+2+22+23+...+250 = ?
`#3107.101107`
Đặt $A = 1 + 2 + 2^2 + 2^3 + ... + 2^{50}$
$2A = 2 + 2^2 + 2^3 + ... + 2^{51}$
$2A - A = (2 + 2^2 + 2^3 + ... + 2^{51}) - (1 + 2 + 2^2 + ... + 2^{50})$
$A = 2 + 2^2 + 2^3 + ... + 2^{51] - 1 - 2 - 2^2 - ... - 2^{50}$
$A = 2^{51} - 1$
Vậy, `A =` $2^{51} - 1.$
Bài 1. Tính S1 = 1 + 2 + 22 + 23 + … + 263
\(S_1=1+2+2^2+2^3+..+2^{63}\\ \Rightarrow2S_1=2+2^2+2^3+2^4+...+2^{64}\\ \Rightarrow S_1-2S_1=1-2^{64}\\ \Rightarrow-S_1=1-2^{64}\\ \Rightarrow S_1=2^{64}-1.\)
- Ta có: S1 = 1 + 2 + 22 + 23 + … + 263 = 1 + 2(1 + 2 + 22 + 23 + … + 262) (1)
= 1 + 2(S1 - 263) = 1 + 2S1 - 264 S1 = 264 - 1
H2.right
`#3107.101107`
`S_1 = 1 + 2 + 2^2 + 2^3 + ... + 2^63`
`2S_1 = 2 + 2^2 + 2^3 + .... + 2^64`
`2S_1 - S_1 = (2 + 2^2 + 2^3 + ... + 2^64) - (1 + 2 + 2^2 + 2^3 + ... + 2^63)`
`S_1 = 2 + 2^2 + 2^3 + ... + 2^64 - 1 - 2 - 2^2 - 2^3 - ... - 2^63`
`S_1 = 2^64 - 1`
Vậy, `S_1 = 2^64 - 1.`
Thu gọn A và tìm n e N biết A + 2 = 2n