Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Bé Nak
Xem chi tiết
Huân Bùi
24 tháng 2 2021 lúc 15:52

a, ΔABD có BA = BD (gt) và ˆABDABD^ = ˆABCABC^ = 60o60o

⇒ ΔABD đều (đpcm)

b, ΔABD đều ⇒ AB = AD

Xét ΔAHB và ΔAHD có:

AH chung; AB = AD (cmt); HB = HD (H là trung điểm của BD)

⇒ ΔAHB = ΔAHD (c.c.c)

⇒ ˆAHBAHB^ = ˆAHDAHD^ mà 2 góc này kề bù

⇒ ˆAHBAHB^ = ˆAHDAHD^ = 90o90o

⇒ AH ⊥ BD (đpcm)

c, ΔABD đều ⇒ AB  = BD = AD = 2cm

⇒ HB = HD = 1cm

⇒ HC = BC - HB = 5 - 1 = 4cm

ΔAHB vuông tại H ⇒ AH = √AB2−HB2AB2−HB2 = √22−1222−12 = √33cm

ΔAHC vuông tại H ⇒ AC = √AH2+HC2AH2+HC2 = √3+423+42 = √1919cm

Nguyễn Lê Phước Thịnh
24 tháng 2 2021 lúc 21:06

a) Xét ΔBAD có BA=BD(gt)

nên ΔBAD cân tại B(Định nghĩa tam giác cân)

Xét ΔBAD cân tại B có \(\widehat{ABD}=60^0\)(gt)

nên ΔBAD đều(Dấu hiệu nhận biết tam giác đều)

b) Ta có: ΔBAD đều(cmt)

mà AH là đường trung tuyến ứng với cạnh BD(gt)

nên AH là đường cao ứng với cạnh BD(Định lí tam giác cân)

hay AH\(\perp\)BD(Đpcm)

 

nguyen thi thao
Xem chi tiết
nguyen thi thao
Xem chi tiết
Lý Dư Diệu Huyền
Xem chi tiết
o0o I am a studious pers...
13 tháng 7 2016 lúc 7:07

A B C M

Ta có : AB = AC => tam giác ABC cân tại A

Ta lại có :

 B = C ( do ABC cân )

AH chung

BM = MC ( gt )

=> AMB = AMC ( c- g - c )

b) Ta có ABC cân 

MÀ M là trung điểm của BC

=> AM là đường cao của ABC

=> AM vuông với BC

Đặng Tiến
13 tháng 7 2016 lúc 7:40

A B C D E M .. ..

a)  Xét \(\Delta AMB\)và \(\Delta AMC\)có:

AB = AC (gt)

AM : cạnh chung (gt)

BM = CM (gt)

\(\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\)

b) \(\Delta ABC\): có M là trung điểm BC => AM  là đường trụng trực của BC.

Mà \(\Delta ABC\)cân tại A nên đường trụng trực đồng thời cũng là đường cao. 

\(\Rightarrow AM\)vuông góc \(BC\)

c) Xét \(\Delta ABE\)và \(\Delta ACD\)có:

AC = AB  (gt)>
Góc A : góc chung (gt)

Do AB = AC(gt) : BD = CE (gt)

=> AB - BD = AC - CE 

=> AD = AE.

Vậy \(\Delta ABE=\Delta ADC\)(c.g.c)

d) \(\Delta ABC\)cân có:

BD = CE

2 đoạn thằng cách đều BC nên khi kẻ DE thì \(DE\)//\(BC\).

Nguyễn Tùng Chi
Xem chi tiết
Nguyễn Đức An
Xem chi tiết
Trí Tiên亗
28 tháng 6 2020 lúc 21:53

A B C H D E 1 2 1 2 3 4

A) XÉT \(\Delta ABC\)VUÔNG TẠI A 

\(BC^2=AB^2+AC^2\left(PYTAGO\right)\)

THAY \(BC^2=3^2+4^2\)

          \(BC^2=9+16\)

          \(BC^2=25\)

\(\Rightarrow BC=\sqrt{25}=5\left(cm\right)\)

XÉT \(\Delta ABC\) CÓ

\(BC>AC>AB\left(5>4>3\right)\)

\(\Rightarrow\widehat{A}>\widehat{B}>\widehat{C}\)QUAN HỆ GIỮA CẠNH VÀ GÓC ĐỐI DIỆN

B) XÉT \(\Delta BAH\)\(\Delta BDH\)

BH LÀ CẠNH CHUNG

\(\widehat{H_2}=\widehat{H_1}=90^o\)

\(AH=DH\left(GT\right)\)

=>\(\Delta BAH\)=\(\Delta BDH\)(C-G-C)

=> AB = BD( ĐPCM)

C) XÉT \(\Delta BAH\)\(\Delta EDH\)

  \(BH=EH\left(GT\right)\)

\(\widehat{H_2}=\widehat{H_4}\left(Đ^2\right)\)

\(AH=DH\left(GT\right)\)

=>\(\Delta BAH\)=\(\Delta EDH\)(C-G-C)

=>\(\widehat{A_1}=\widehat{D_2}\)HAI GÓC TƯƠNG ỨNG 

HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG BẰNG NHAU

=> DE//AB

Khách vãng lai đã xóa
Trâm Phạm Thùy Huyền
Xem chi tiết
Thanh Ngân
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 12 2021 lúc 11:18

a: Xét ΔABD và ΔACD có

AB=AC

AD chung

BD=CD

Do đó: ΔABD=ΔACD

Khánh phạm
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 12 2023 lúc 18:10

a: Ta có: ΔABC vuông tại A

=>\(\widehat{ABC}+\widehat{ACB}=90^0\)

=>\(\widehat{ABC}+60^0=90^0\)

=>\(\widehat{ABC}=30^0\)

Xét ΔCAD có CA=CD
nên ΔCAD cân tại C

b: Xét ΔCAM và ΔCDM có

CA=CD

AM=DM

CM chung

Do đó: ΔCAM=ΔCDM

c: Ta có: ΔCAM=ΔCDM

=>\(\widehat{ACM}=\widehat{DCM}\)

=>\(\widehat{ACP}=\widehat{DCP}\)

Xét ΔPAC và ΔPDC có

CA=CD
\(\widehat{PCA}=\widehat{PCD}\)

CP chung

Do đó: ΔPAC=ΔPDC

=>\(\widehat{PAC}=\widehat{PDC}\)

mà \(\widehat{PAC}=90^0\)

nên \(\widehat{PDC}=90^0\)

=>PD\(\perp\)BC