cho tam giác ABC có góc B = 60 độ 2tia phân giác AD và CE cắt nhau tại I
(D thuộc BC ) ; (E thuộc AB )
Chứng minh tam giác IDE vuông cân ( Hình như là chứng minh cân )Nếu ai chứng minh đc vuông cân thì tốt quá
Cho tam giác ABC có góc B=600.Hai đường phân giác AD và CE của góc A và C cắt nhau tại I (D thuộc BC và E thuộc AB).Chứng minh tam giác IDE cân
Trên AC lấy F sao cho AE=AF
Xét ΔAEI và ΔAFI co
AE=AF
góc EAI=góc FAI
AI chung
Do đó: ΔAEI=ΔAFI
=>EI=FI
góc IAC=180 độ-góc IAC-góc ICA
=180 độ-1/2*120
=120 độ
=>góc AIE=góc DIC=60 độ
góc AIF=góc AIE=60 độ
Xet ΔDIC và ΔFIC có
góc DCI=góc FCI
CI chung
góc DIC=góc FIC
Do đó: ΔDIC=ΔFIC
=>ID=IF
=>ID=IE
=>ΔIDE cân tại I
Cho tam giác ABC có góc B bằng 60 độ, hai tia phân giác AD và CE ( D thuộc BC, E thuộc AB) cắt nhau ở I. C/m ID = IE
Cho tam giác ABC có góc B = 600. Hai tia phân giác AD và CE của các góc BAC; ACB cắt nhau tại I và D thuộc BC; E thuộc AB.
CMR: ID = IE
a, Trong tam giác ABC có : góc ABC + góc ACB + góc BAC = 180 độ
=> góc ABC + góc ACB =180 độ - góc BAC = 180 độ - 60 độ = 120 độ
Mà BD và CE lần lượt là phân giác của góc ABC ; ACB nên
120 độ = 2.góc IBC + 2.góc ICB = 2.(góc IBC + góc ICB)
=> góc IBC + góc ICB = 120 độ : 2 = 60 độ
Trong tam giác IBC có : góc IBC + góc ICB + góc BIC = 180 độ
=> góc BIC = 180 độ - (góc IBC + góc ICB) = 180 độ - 60 độ = 120 độ
Cho tam giác ABC có góc B=60o. Hai tia phân giác AD và CE của các góc BAC và ACB (D thuôc BC; E thuộc AB) cắt nhau tại I.
Cmr ID=IE
CHO TAM GIÁC ABC GÓC B=60 ĐỘ , TIA PHÂN GIÁC CỦA GÓC BAC CẮT BC TẠI D . TIA PHÂN GIÁC GÓC ACB CẮT AB TẠI E . AD VÀ CE CẮT NHAU TẠI O.
CMR:OE=OD
Cho tam giác ABC có góc B=60 độ. 2 tia p/giác AD và CE của các góc BAC và ACB ( D thuộc BC , E thuộc AB) cắt nhau ở I . CMR : ID=IE
Cho tam giác ABC có góc A=60 độ .Kẻ tia phân giác BD,CE( E thuộc AB ;D thuộc AC)
BD và CE cắt nhau tại O. Tia phân giác của góc BOC cắt BC tại F.
Chứng minh rằng
a) OD=OE=OF
b)tam giác DEF là tam giác đều
cho tam giác ABC có góc A=60 độ. Kẻ BD, CE là phân giác góc B và góc C. D thuộc AC, E thuộc AB. BD và CE cắt nhau tại I
a, Tính góc BIC
b, BE+CD=BC
giúp mik nhanh nha, mik cần gấp lắm
a)ta có tổng ba góc củaΔABC =180'
mà góc A= 60'
--->góc ABC + góc ACB = 180' - 60' = 120' (1)
Vì BD là tia phân giác của góc ABC
--->góc B1 = góc B2 (2)
Vì CE là tia phân giác của góc ACB
---> góc C1 = góc C2 (3)
Từ 1,2,3
--->B1 + C1 = B2 + C2 = 1/2 góc ABC +ACB
=1/2 . 120' =60'
ta có ΔBIC có BIC + B2 + C2 =180'
mà B2 + C2 =60' --->góc BIC = 180-60=120'
b)
Ta có góc I1 + góc BIC = 180' ( kề bù)
mà góc BIC = 120'
--->góc I1 = 180' -120'=60'
--->góc I1 = góc 4 =60' (đối đỉnh)
Vẽ IK là tia phân giác của góc BIC
---> góc I2 = góc I3 =60'
Xét ΔEIB và ΔKIB có :
góc B1 = góc B2 ( BD là tia phân giác )(
góc I1 = góc I2 =60'
BI : cạnh chung
---> ΔEIB = ΔKIB ( g.c.g)
--->EB = BK ( hai cạnh tương ứng )
Xét ΔDIC và ΔKIC có :
IC : cạnh chung
góc C1 = góc C2( Ci là tia phân giác )
góc C3 = góc C4 =60'
--->ΔDIC = ΔKIC (g.c.g)
--->DC = KC ( hai cạnh tương ứng )
Vì EB = BK ; DC = KC
--->BK + KC = BC = EB + DC
Cho tam giác ABC có góc B=600. Hai tia phân giác AD và CE của các góc BAC; ACB; cắt nhau tại I ( D thuộc AB; E thuộc AB).
CMR: ID = IE
a, Trong tam giác ABC có : góc ABC + góc ACB + góc BAC = 180 độ
=> góc ABC + góc ACB =180 độ - góc BAC = 180 độ - 60 độ = 120 độ
Mà BD và CE lần lượt là phân giác của góc ABC ; ACB nên
120 độ = 2.góc IBC + 2.góc ICB = 2.(góc IBC + góc ICB)
=> góc IBC + góc ICB = 120 độ : 2 = 60 độ
Trong tam giác IBC có : góc IBC + góc ICB + góc BIC = 180 độ
=> góc BIC = 180 độ - (góc IBC + góc ICB) = 180 độ - 60 độ = 120 độ