Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
LÂM 29
Xem chi tiết
Đạt Trần Thọ
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 12 2023 lúc 8:30

a: Xét tứ giác ABQN có

\(\widehat{BQN}=\widehat{QNA}=\widehat{NAB}=90^0\)

=>ABQN là hình chữ nhật

b: Xét ΔCAD có

DN,CH là các đường cao

DN cắt CH tại M

Do đó: M là trực tâm của ΔCAD

=>AM\(\perp\)CD

c: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có

\(\widehat{HAB}=\widehat{HCA}\left(=90^0-\widehat{ABC}\right)\)

Do đó: ΔHAB đồng dạng với ΔHCA

=>\(\dfrac{HA}{HC}=\dfrac{HB}{HA}\)

=>\(HA^2=HB\cdot HC\)

=>\(HA=\sqrt{HB\cdot HC}\)

 

Đạt Trần Thọ
10 tháng 12 2023 lúc 6:03

loading...  

Tuananh Le
Xem chi tiết
Shinichi Kudo
26 tháng 2 2021 lúc 15:48

Vì \(\widehat{ABO}\)là góc tạo bởi tia tiếp tuyến AB và dây cung BD ( đường kính AB )

\(\Rightarrow\widehat{ABO}=\frac{1}{2}.\widehat{BOD}=\frac{1}{2}.180^o=90^o\)

Chứng mình ương tự với \(\widehat{ACO}\), suy ra \(\widehat{ACO}=90^o\)

Xét tứ giác ABOC có : 

Góc ABO và góc ACO là hai góc đối

\(\widehat{ABO}+\widehat{ACO}=90^o+90^o=180^o\)

=> Tứ giác ABOC nội tiếp đường tròn ( theo tính chất tổng hai góc đối bằng 180 độ ... )

Gọi I là trung điểm của AB

Có tam giác ABO vuông tại B, trung tuyến là BI

=> BI = 1/2.AO=AI=IO (1)

Tam giác ACO vuông tại C, có trung tuyến là CI

=> CI=1/2.AO=AI=IO (2)

Từ (1) và (2) => BI = AI = IO = IC

=> I cách đều 4 đỉnh tứ giác ABOC 

=> I là tâm đường tròn ngoại tiếp tứ giác ABOC , có bán kinh R= 1/2.AO

Khách vãng lai đã xóa
tranthuylinh
Xem chi tiết
Quỳnh Ngân
Xem chi tiết
Nguyễn Ngọc Thuỳ Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 12 2023 lúc 13:35

a: Xét (O) có

AB,AC là tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC

b: Xét (O) có

ΔCND nội tiếp

CD là đường kính

Do đó: ΔCND vuông tại N

=>CN\(\perp\)ND tại N

=>CN\(\perp\)AD tại N

Xét ΔDCA vuông tại C có CN là đường cao

nên \(AN\cdot AD=AC^2\left(3\right)\)

Ta có: OA là trung trực của BC

=>OA\(\perp\)BC tại H và H là trung điểm của BC

Xét ΔOCA vuông tại C có CH là đường cao

nên \(AH\cdot AO=AC^2\left(4\right)\)

Từ (3) và (4) suy ra \(AN\cdot AD=AH\cdot AO\)

c: Ta có: \(AH\cdot AO=AN\cdot AD\)

=>\(\dfrac{AH}{AD}=\dfrac{AN}{AO}\)

Xét ΔAHN và ΔADO có

\(\dfrac{AH}{AD}=\dfrac{AN}{AO}\)

\(\widehat{HAN}\) chung

Do đó: ΔAHN đồng dạng với ΔADO

=>\(\widehat{AHN}=\widehat{ADO}\)

Ta có: ΔOCA vuông tại C

=>\(CO^2+CA^2=OA^2\)

=>\(CA^2=\left(2R\right)^2-R^2=3R^2\)

=>\(CA=R\sqrt{3}\)

Ta có: ΔDCA vuông tại C

=>\(DC^2+CA^2=DA^2\)

=>\(DA^2=\left(2R\right)^2+\left(R\sqrt{3}\right)^2=7R^2\)

=>\(DA=R\sqrt{7}\)

Xét ΔDCA vuông tại C có \(sinCDA=\dfrac{CA}{DA}\)

=>\(sinCDA=\dfrac{R\sqrt{3}}{R\sqrt{7}}=\sqrt{\dfrac{3}{7}}=\dfrac{\sqrt{21}}{7}\)

=>\(sinAHN=\dfrac{\sqrt{21}}{7}\)

Trần Công Duy Hiếu
Xem chi tiết
nthv_.
1 tháng 10 2021 lúc 6:32

undefined

Nguyễn Cẩm Uyên
1 tháng 10 2021 lúc 6:51

trong \(\Delta ABC\) vuông tại A

AB=AC.tanC=10.tan30=5,77

CB=\(\sqrt{AC^2+AB^2}=\sqrt{10^2+5,77^2}=11,55\)

\(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{5,77.10}{11,55}=5\)

 

\(\widehat{B}=90-\widehat{C}=90-30=60\)

Kim Phụng Nguyễn
Xem chi tiết
Nguyên
Xem chi tiết
Đặng Quỳnh Ngân
12 tháng 2 2016 lúc 15:17

xet tg AMH vuong tai M co; AH2 = AM2 + HM2

tg BMH co; BM2 = BH2-HN2

cong 2 pt ban toi da nhan ra chua ban co thay AM=AN ; HM = HN thay vao ban se thay phep dieu ky

ma toi mang den cho ban la dpcm