Mn vẽ đáy ABC NẰM DƯỚI NHÉ Ạ. MN CHỈ CẦN XÁC ĐỊNH GÓC THÔI
giúp em các bài 10,13,20 với mn ơi em chỉ cần trình bày thôi ạ nếu có hình vẽ thì càng tốt ạ
Mọi người giải giúp mình bài này với ạ, cảm ơn mn nhiều, chỉ cần câu c ý chứng minh góc 90 độ thôi ạ
a: Xét tứ giác ABQN có
\(\widehat{BQN}=\widehat{QNA}=\widehat{NAB}=90^0\)
=>ABQN là hình chữ nhật
b: Xét ΔCAD có
DN,CH là các đường cao
DN cắt CH tại M
Do đó: M là trực tâm của ΔCAD
=>AM\(\perp\)CD
c: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
\(\widehat{HAB}=\widehat{HCA}\left(=90^0-\widehat{ABC}\right)\)
Do đó: ΔHAB đồng dạng với ΔHCA
=>\(\dfrac{HA}{HC}=\dfrac{HB}{HA}\)
=>\(HA^2=HB\cdot HC\)
=>\(HA=\sqrt{HB\cdot HC}\)
Cho (O ;R) từ điểm A nằm ngoài (O)vẽ hai tiếp tuyến AB AC và các tiếp tuyến AMN a) Chứng minh AM.AN = AB^2 b) Vẽ đường kính BD chứng minh CD//OA C) cho MN = 8 cm ; R = 5cm . Tính khoảng cách từ O đến dây MN D) BC cắt OA tại H, c/m AH.AD=AM.AN E) c/m tứ giác ABOC nội tiếp đường tròn .Xác định tâm I và bán kính của đường tròn đó Câu a , b, c , d mình làm rồi mình chỉ cần câu e thôi ai biết chỉ mình vs thanks
Vì \(\widehat{ABO}\)là góc tạo bởi tia tiếp tuyến AB và dây cung BD ( đường kính AB )
\(\Rightarrow\widehat{ABO}=\frac{1}{2}.\widehat{BOD}=\frac{1}{2}.180^o=90^o\)
Chứng mình ương tự với \(\widehat{ACO}\), suy ra \(\widehat{ACO}=90^o\)
Xét tứ giác ABOC có :
Góc ABO và góc ACO là hai góc đối
\(\widehat{ABO}+\widehat{ACO}=90^o+90^o=180^o\)
=> Tứ giác ABOC nội tiếp đường tròn ( theo tính chất tổng hai góc đối bằng 180 độ ... )
Gọi I là trung điểm của AB
Có tam giác ABO vuông tại B, trung tuyến là BI
=> BI = 1/2.AO=AI=IO (1)
Tam giác ACO vuông tại C, có trung tuyến là CI
=> CI=1/2.AO=AI=IO (2)
Từ (1) và (2) => BI = AI = IO = IC
=> I cách đều 4 đỉnh tứ giác ABOC
=> I là tâm đường tròn ngoại tiếp tứ giác ABOC , có bán kinh R= 1/2.AO
MN GIÚP MIK CÂU Ý 3 THÔI Ạ
MIK CHỈ CẦN Ý 3 THÔI Ạ
KO CẦN Ý 1,2 Ạ
Bài 1: cho \(\Delta ABC\) vuông tại A C có AB=AC. Qua A kẻ đường thẳng xy ( B,C nằm cùng phía với xy ). Kẻ BD và CE vuông góc với xy. Chứng minh rằng :
a) \(\Delta BAD=\Delta ACE\)
b) DE=BD+CE
mn chỉ cần giải thôi nhé ko cần vẽ hình
Mình chỉ cần câu c thôi ạ, không hình cũng được ạ. Mình cảm ơn
Cho A nằm ngoài (O;R) vẽ hai tiếp tuyến AB,AC.
a. chứng minh OA vuông góc BC.
b. vẽ đường kinh CD, AD cắt (O) tại N. chứng minh AH.AO= AN.AD
c. giả sử OA=2R. tính giá trị chính xác sin(AHN)
a: Xét (O) có
AB,AC là tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC
b: Xét (O) có
ΔCND nội tiếp
CD là đường kính
Do đó: ΔCND vuông tại N
=>CN\(\perp\)ND tại N
=>CN\(\perp\)AD tại N
Xét ΔDCA vuông tại C có CN là đường cao
nên \(AN\cdot AD=AC^2\left(3\right)\)
Ta có: OA là trung trực của BC
=>OA\(\perp\)BC tại H và H là trung điểm của BC
Xét ΔOCA vuông tại C có CH là đường cao
nên \(AH\cdot AO=AC^2\left(4\right)\)
Từ (3) và (4) suy ra \(AN\cdot AD=AH\cdot AO\)
c: Ta có: \(AH\cdot AO=AN\cdot AD\)
=>\(\dfrac{AH}{AD}=\dfrac{AN}{AO}\)
Xét ΔAHN và ΔADO có
\(\dfrac{AH}{AD}=\dfrac{AN}{AO}\)
\(\widehat{HAN}\) chung
Do đó: ΔAHN đồng dạng với ΔADO
=>\(\widehat{AHN}=\widehat{ADO}\)
Ta có: ΔOCA vuông tại C
=>\(CO^2+CA^2=OA^2\)
=>\(CA^2=\left(2R\right)^2-R^2=3R^2\)
=>\(CA=R\sqrt{3}\)
Ta có: ΔDCA vuông tại C
=>\(DC^2+CA^2=DA^2\)
=>\(DA^2=\left(2R\right)^2+\left(R\sqrt{3}\right)^2=7R^2\)
=>\(DA=R\sqrt{7}\)
Xét ΔDCA vuông tại C có \(sinCDA=\dfrac{CA}{DA}\)
=>\(sinCDA=\dfrac{R\sqrt{3}}{R\sqrt{7}}=\sqrt{\dfrac{3}{7}}=\dfrac{\sqrt{21}}{7}\)
=>\(sinAHN=\dfrac{\sqrt{21}}{7}\)
Mn giair dùm minh câu này với ạ Tìm tất cả độ dài tất cả các cạnh và góc Chỉ cần tìm câu b) thôi. Thxxxx
trong \(\Delta ABC\) vuông tại A
AB=AC.tanC=10.tan30=5,77
CB=\(\sqrt{AC^2+AB^2}=\sqrt{10^2+5,77^2}=11,55\)
\(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{5,77.10}{11,55}=5\)
\(\widehat{B}=90-\widehat{C}=90-30=60\)
Cho hình thang cân ABCD có đáy nhỏ AB. Vẽ AH vuông góc với CD. CMR: CH=\(\dfrac{CD+AB}{2}\). mn giúp mình vs ạ, mình đang cần gấp ạ. <33 Thanks mn nhiều.
Cho tam giác ABC cân tại A. Vẽ AH vuông góc với BC
a) cm tam giác AHB=tam giác AHC
b) Vẽ HM vuông góc với AB, HN vuông góc với AC. cm tam giác AMN cân
c) cm MN//BC
d) cm \(AH^2+BM^2=AN^2+BH^2\)
CHỈ CẦN GIUP MÌNH CÂU D THÔI CÁC BẠN NHÉ. CẢM ƠN TRƯỚC
KHÔNG CẦN VẼ HÌNH CŨNG ĐC
xet tg AMH vuong tai M co; AH2 = AM2 + HM2
tg BMH co; BM2 = BH2-HN2
cong 2 pt ban toi da nhan ra chua ban co thay AM=AN ; HM = HN thay vao ban se thay phep dieu ky
ma toi mang den cho ban la dpcm