Bài 1:tìm các số tận cùng của :
a,20082014
b,9992003
Bài 2:CMR:
a,34n+1+2chia hết cho 5
b,92n+1+1 chia hết cho 10
bài 1:CMR:
a)8102-2102 chia hết cho 10
b)34n-1+2chia hết cho 5
bài 2 :tìm chữ số tận cùng
a)c=2.1+2.3+2.32004
b)B=1+3+32+....+3300
1.
a)8102-2102
= 82 .8100 - 22. 2100
=64.(84)25-4.(24)25
=64 . ...625 - 4 . ...625
=....4 - ...4
.=...0 chia hết cho 10
b)34n+1+2
=(34)n+1 + 2
= ....1 + 2
=....3 chia hết cho 3
2.
a)C = 2.1+2.3+...+2.32004
C = 2.(1+3+...+32004)
đặt D=1+3+..+32004
3D=3+ .....+32005
3D - D=32005 - 3
2D=32005-1
2D= (34)501.3 - 1
2D = 81501 .3 - 1
D= (...1 . 3- 1):2
D = (...3 - 1) :2
D= ...2 : 2
D=....1
b)B= 1+ 3+...+3300
3B= 3+...+3101
2D = 3101 - 1
D= (3101 - 1):2
D=(3100.3-1):2
D=[(34)25. 3 -1]:2
D= [...125.3-1]:2
D= [...3-1]:2
D=...2:2
D=....1
Bài 1 : Tìm chữ a , b để
a) 134ab chia hết cho 5 và 9
b) 52ab chia hết cho 9 và chia 5 dư 2
c) 35a4b chia hết cho 3
Bài 2 : CMR : 27 số 1 chia hết 27
Bài 3 : Cho A = liên tiếp các số tự nhiên từ 1 đến 99 . Hỏi A có chia hết cho 9 không ?
Bài 4 : A = 100! . Hỏi A có tận cùng là bao nhiêu chữ số 0 ?
Bài 1:
a) 134ab chia hết cho 5 và 9
ta xét trường hợp chia hết cho 5 đầu tiên nên b=0;b=5
khi đó ta có:134a0 hoặc 134a5
sau đó ta xét trường hợp chia hết cho 9
ta có134a0 = 1+3+4+a+0 chia hết cho 9 nên a =1
thử lại:1+3+4+1+0 = 9 chia hết cho 9
tiếp theo ta xét số 134a5
ta có 134a5 = 1+3+4+a+5 chia hết cho 9 nên a =5
thử lại: 1+3+4+5+5=18 chia hết cho 9
đáp số:13415 và 13455
Chứng minh rằng với mọi số tự nhiên n:
b) 34n + 1 + 2 chia hết cho 5
c) 24n + 1 + 3 chia hết cho 5
d) 24n + 2 + 1 chia hết cho 5
e) 92n+1 + 1 chia hết cho 10
b) 34n + 1 + 2 = 34n . 3 + 2 = (...1) . 3 + 2 = (....3) + 2 = (....5) ⋮ 5
c) 24n + 1 + 3 = 24n . 2 + 3 = (...6) . 2 + 3 = (....2) + 3 = (....5) ⋮ 5
d) 24n + 2 + 1 = 24n . 22 + 1 = (...6) . 4 + 1 = (...4) + 1 = (....5) ⋮ 5
e) 92n+1 + 1 = 92n . 9 + 1 = (...1) . 9 + 1 = (....9) + 1 = (....0) ⋮ 10
Hok tốt
CMR:
a)74n-1 chia hết cho 5
b)34n+1+2 chia hết cho 5
c)92n+1+1 chia hết cho 10
d)24n+2+1 chia hết cho 5
Bài 1: Tìm chữ số tận cùng (dùng đồng dư)
a) 6^195
b) 2^1000
Bài 2: Tìm 2 chữ số tận cùng của 2^999; 3^999
Bài 3: Chứng tỏ rằng
A=2^1995-1. A chia hết cho 31
B=3021^93-1. B chia hết cho 13
Bài 4: Tìm số dư.
a) (3^100+3^105) /13
b)(1532^5-1) /9
CÁC BẠN ƠI GIÚP MÌNH VỚI MỖI NGƯỜI LÀM 1 BÀI THÔI CŨNG ĐƯỢC!!!!!!!!!!!!!
Bài 1 Chứng minh rằng 17^5 + 24^4 - 13^21 chia hết cho 10
Bài 2 Cho A bằng { (1 + 2+ 3 + .. . + n ) - 7 } . Hỏi A có chia hết cho 10 không ?
Bài 3 Tìm chữ số tận cùng của 5^ n (n>1)
Bài 4 Chứng minh rằng
a Trong ba số tự nhiên liên tiếp có 1 số chia hết cho 3
b Trong 4 số tự nhiên liên tiếp có một số chia hết cho 4
c Trong năm số tự nhiên liên tiếp có một số chia hết cho 5
bài 1cho tổng S =3+3^2+3^3+........+3^2007
a)chứng minh S chia hết cho 13
b) tìm số dư khi chia S cho 40
c)so sánh 2S +3 với 82^502
bài 2:
a) tìm x thuộc N sao cho (2x-1)^x-4=(x+2)x-4
b) tìm số A =12x3y(có gạch trên đầu)sao cho A chia hết cho 45
c)tìm x,y thuộc N thỏa mãn 4^x+342=7^y
d)tìm chữ số a,b sao cho a-b=3 và 3a5b(có gạch trên đầu) chia hết cho 3
bài 3: a)cmr : nếu abcd(cgtđ) chia hết cho 99 thì ab(cgtđ) +cd(cgtđ) chia hết cho 99
b)chứng minh:B=2x10^n+25 chia hết cho 9 với n thuộc N
c) cho a,b là các chữ số , chứng minh:nếu 6a+11b chia hết cho 31 thì b0a(cgtđ) chia hết cho 31
d) cho 10^2n -1 chia hết cho 11 chứng minh 10^2n-1 +1 chia hết cho 11
bài 4:
a) tìm chữ số tận cùng của số M=9^9^9 + 2007^2008
b) từ các số 0;1;2;3;4;5;6 viết được bao nhiêu số có 5 chữ số khác nhau và số đó chia hết cho 5
GIẢI HỘ 1 SỐ BÀI CX ĐC KO CẦN GIẢI HẾT NHƯNG NHỚ GIẢI CHI TIẾT VÀ ĐÚNG NHA ^^
(3+32+33)+(34+35+36)+...+(32005+32006+32007)
=3(1+3+32)34(1+3+32)+...+32005(1+3+32)
=3.13+3^4.13+...+3^2005.13
=13(3+34+...+32005)
tick mk nha
Ta có 3.S=3.(3+3^2+3^3+........+3^2007)
Bài 1:Chứng minh với mọi số tự nhiên n, luôn có
a.12^4n+1+3^4n+1 chia hết cho 5
b.9^2001n+1 chia hết cho 10
c.n^2+n+12 không chia hết cho 5
Bài 2:Tìm chữ số tận cùng
a.2008^29
b.192^26
c.1997^1997
d.1657^735
Bài 1: Tìm số tự nhiên n, sao cho:
a) 2n+5 chia hết cho n+1
b) 4n-7 chia hết cho n-1
c) 10-2n chia hết cho n-2
d) 5n-8 chia hết cho 4-n
e) n^2 +3n+6 chia hết cho n+3
Bài 2: Cho A= 2+2^2+2^3+...+2^99+2^100
a) chứng tỏ rằng A chia hết cho 2,3,15
b) A là số Nguyên tố hay Hợp số? Vì sao ?
c) Tìm chữ số tận cùng của A
Bài 3: Tìm ƯCLN
a) 2n+1 và 3n+1
b) 9n+13 và 3n+4
c) 2n+1 và 2n+3
Bài 4:Chứng minh rằng các Số tự nhiên sau đây là các số nguyên tố cùng nhau:
a) 7n+10 và 5n+7
b) 2n+3 và 4n+7
Bài 5:Tìm số tự nhiên a,b
a) a x b=12
b) (a-1) (b+2)=7
c) a+b+72 và ƯCLN(a,b)+9
d) a x b= 300 và ƯCLN(a,b)=5
e) ƯCLN(a,b)=12 và BCNN(a,b)= 72
Bài 6 : Chứng tỏ rằng:
a) (10^n + 8 ) chia hết cho 9
b) (10^100+5^3) chia hết cho 3 và 9
c) (n^2+n+1) không chia hết cho 2 và 5 (n thuộc N )
d) (10^9 +10^8 +10^7) chia hết cho 555
Bài 7: Chứng tỏ rằng với mọi số tự nhiên n thì ( n+4) (n+7) luôn là 1 số chẵn
ai làm được đủ hết thì làm giùm mình nhé còn không thì chỉ cần làm cho mình mỗi người 1 vài bài mà các bạn làm được là được rồi mình cảm ơn trước nhé làm nhanh nhé trong ngày hôm nay nhé cố gắng giúp giùm !!!
Bài 1:
a)2n+5chia hết cho n+1<=>2(n+1)+3 chia hết cho n+1=>3 chia hết cho n+1 mà n thuộc N
=>n+1 thuộc {1;3}
=>n thuộc{0;2}
b)4n-7chia hết cho n-1<=>4(n-1)-3chia hết cho n-1=>3chia hết cho n-1 mà n thuộc N
=>n-1 thuộc{-1;1;3}
=>n thuộc {1;2;4}
c)10-2n chia hết cho n-2<=>14-2(n-2) chia hết cho n-2 =>14 chia hết cho n-2 mà n thuộc N
=>n-2 thuộc {-2;-1;1;2;7;14}
=>n thuộc {0;1;3;4;9;16}
d)5n-8 chia hết cho 4-n <=>5(4-n)-28 chia hết cho n-4=>28chia hết cho n-4 mà n thuộc N
=>n-4 thuộc {-4;-2;-1;1;2;4;7;14;28}
=>n thuộc{0;2;3;5;6;8;11;18;32}
e)n2+3n+6 chia hết cho n-3<=>-n(n-3)+6 chia hết cho n-3=>6 chia hết cho n-3 mà n thuộc N
=>n-3 thuộc{-3;-2;-1;1;2;3;6}
=>n thuộc{0;1;2;4;5;6;9}
Bài 2:
a)A=2+22+23+...+2100 chia hết cho 2
A=2+22+23+24+...+299+2100
A=2(1+2)+23(1+2)+...+299(1+2) chia hết cho 1+2<=>A chia hết cho 3
A=2+22+23+24+25+26+27+28+...+297+298+299+2100
A=2(1+2+22+23)+24(1+2+22+23)+...+297(1+2+22+23)=>A chia hết cho 1+2+22+23 <=>Achia hết cho 15
b)A chia hết cho 2 => A là hợp số
c)A=2+22+23+24+25+26+27+28+...+297+298+299+2100
A=(2+22+23+24)+(25+26+27+28)+...+(297+298+299+2100)
A=(24n1-3+24n1-3+24n1-1+24n1)+(24n2-3+24n2-3+24n2-1+24n2)+...+(24n25-3+24n25-3+24n25-1+24n25)
A=(...2+...4+...8+...6)+(...2+...4+...8+...6)+...+(...2+...4+...8+...6)
A=...0+...0+...+...0
A=0
Bài 3:
a)gọi UCLN của 2n+1 và 3n+1 là d
2n+1 chia hết cho d => 6n+3 chia hết cho d
3n+1 chia hết cho d =>6n+2 chia hết cho d
=>6n+3-(6n+2) chia hết cho d
1 chia hết cho d
=>d =1=>UCLN cua 2n+1 va 3n+1 chia hết cho d
b)Gọi UCLN cua 9n+13và 3n+4 là m
9n+13 chia hết cho m
3n+4 chia hết cho m=>9n+12 chia hết cho m
=>9n+13-(9n+12) chia hết cho m
1 chia hết cho m
=> m=1
=> UCLN cua 9n+13 va 3n+4 là1
c) gọi UCLN cua 2n+1 và 2n+3 là n
2n+3 chia hết cho n
2n+1 chia hết cho n
2n+3-(2n+1) chia hết cho n
2chia hết cho n
n thuộc {1,2}
=> UCLN của 2n+1 và 2n+3 là 1 hoặc 2
Bài 4:
a) Gọi UCLN của 7n+10 và 5n+7 là m
7n+10 chia hết cho m<=>35n+50 chia hết cho m
5n+7 chia hết cho m<=>35n+49 chia hết cho m
=>35n+50-(35n+49) chia hết cho m
1 chia hết cho m
m=1
=> UCLN của 7n+10 và 5n+7 là 1=>7n+10 và 5n+7 là 2 số nguyên tố cùng nha
b)Gọi UCLN cua 2n+3 và 4n+7 là d
2n+3 chia hết cho d <=>4n+6 chia hết cho d
4n+7 chia hết cho d
=>4n+7-(4n+6) chia hết cho d
1 chia hết cho d
d=1
=>UCLN của 4n+7 và 2n+3 là 1=>4n+7 và 2n+3 là 2 số nguyên tố cùng nhau
Bài 1: Tìm số tự nhiên n, sao cho:
a) 2n+5 chia hết cho n+1
b) 4n-7 chia hết cho n-1
c) 10-2n chia hết cho n-2
d) 5n-8 chia hết cho 4-n
e) n^2 +3n+6 chia hết cho n+3
Bài 2: Cho A= 2+2^2+2^3+...+2^99+2^100
a) chứng tỏ rằng A chia hết cho 2,3,15
b) A là số Nguyên tố hay Hợp số? Vì sao ?
c) Tìm chữ số tận cùng của A
Bài 3: Tìm ƯCLN
a) 2n+1 và 3n+1
b) 9n+13 và 3n+4
c) 2n+1 và 2n+3
Bài 4:Chứng minh rằng các Số tự nhiên sau đây là các số nguyên tố cùng nhau:
a) 7n+10 và 5n+7
b) 2n+3 và 4n+7
Bài 5:Tìm số tự nhiên a,b
a) a x b=12
b) (a-1) (b+2)=7
c) a+b+72 và ƯCLN(a,b)+9
d) a x b= 300 và ƯCLN(a,b)=5
e) ƯCLN(a,b)=12 và BCNN(a,b)= 72
Bài 6 : Chứng tỏ rằng:
a) (10^n + 8 ) chia hết cho 9
b) (10^100+5^3) chia hết cho 3 và 9
c) (n^2+n+1) không chia hết cho 2 và 5 (n thuộc N )
d) (10^9 +10^8 +10^7) chia hết cho 555
Bài 7: Chứng tỏ rằng với mọi số tự nhiên n thì ( n+4) (n+7) luôn là 1 số chẵn
ai làm được đủ hết thì làm giùm mình nhé còn không thì chỉ cần làm cho mình mỗi người 1 vài bài mà các bạn làm được là được rồi mình cảm ơn trước nhé làm nhanh nhé trong ngày hôm nay nhé cố gắng giúp giùm !!!
dài thấy mợ luôn để t lm đc bài nào thì t lm
a)2n+5chia hết cho n+1<=>2(n+1)+3 chia hết cho n+1=>3 chia hết cho n+1 mà n thuộc N
=>n+1 thuộc {1;3}
=>n thuộc{0;2}
b)4n-7chia hết cho n-1<=>4(n-1)-3chia hết cho n-1=>3chia hết cho n-1 mà n thuộc N
=>n-1 thuộc{-1;1;3}
=>n thuộc {1;2;4}
c)10-2n chia hết cho n-2<=>14-2(n-2) chia hết cho n-2 =>14 chia hết cho n-2 mà n thuộc N
=>n-2 thuộc {-2;-1;1;2;7;14}
=>n thuộc {0;1;3;4;9;16}
d)5n-8 chia hết cho 4-n <=>5(4-n)-28 chia hết cho n-4=>28chia hết cho n-4 mà n thuộc N
=>n-4 thuộc {-4;-2;-1;1;2;4;7;14;28}
=>n thuộc{0;2;3;5;6;8;11;18;32}
e)n^2+3n+6 chia hết cho n-3<=>-n(n-3)+6 chia hết cho n-3=>6 chia hết cho n-3 mà n thuộc N
=>n-3 thuộc{-3;-2;-1;1;2;3;6}
=>n thuộc{0;1;2;4;5;6;9}
Bài 2:
a)A=2+2^2+2^3+...+2^100 chia hết cho 2
A=2+2^2+2^3+2^4+...+2^99+2^100
A=2(1+2)+2^3 (1+2)+...+2^99 (1+2) chia hết cho 1+2<=>A chia hết cho 3
A=2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+...+2^97+2^98+2^99+2^100
A=2(1+2+2^2+2^3 )+2^4 (1+2+2^2+2^3 )+...+2^97 (1+2+2^2+2^3 )=>A chia hết cho 1+2+2^2+2^3 <=>Achia hết cho 15
b)A chia hết cho 2 => A là hợp số.
c)A=2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+...+2^97+2^98+2^99+2^100
A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+...+(2^97+2^98+2^99+2^100 )
A=(24n1 -3+24n1 -3+24n1 -1+24n1)+(24n2 -3+24n2 -3+24n2 -1+24n2)+...+(24n25 -3+24n25 -3+24n25 -1+24n25)
A=(...2+...4+...8+...6)+(...2+...4+...8+...6)+...+(...2+...4+...8+...6)
A=...0+...0+...+...0.
A=....0
Bài 3:
a)gọi UCLN của 2n+1 và 3n+1 là d
2n+1 chia hết cho d => 6n+3 chia hết cho d
3n+1 chia hết cho d =>6n+2 chia hết cho d
=>6n+3-(6n+2) chia hết cho d
1 chia hết cho d
=>d =1=>UCLN cua 2n+1 va 3n+1 chia hết cho d
b)Gọi UCLN cua 9n+13và 3n+4 là m
9n+13 chia hết cho m
3n+4 chia hết cho m=>9n+12 chia hết cho m
=>9n+13-(9n+12) chia hết cho m
1 chia hết cho m
=> m=1
=> UCLN cua 9n+13 va 3n+4 là1
c) gọi UCLN cua 2n+1 và 2n+3 là n
2n+3 chia hết cho n
2n+1 chia hết cho n
2n+3-(2n+1) chia hết cho n
2chia hết cho n
n thuộc {1,2}
=> UCLN của 2n+1 và 2n+3 là 1 hoặc 2
Bài 4:
a) Gọi UCLN của 7n+10 và 5n+7 là m
7n+10 chia hết cho m<=>35n+50 chia hết cho m
5n+7 chia hết cho m<=>35n+49 chia hết cho m
=>35n+50-(35n+49) chia hết cho m
1 chia hết cho m
m=1
=> UCLN của 7n+10 và 5n+7 là 1=>7n+10 và 5n+7 là 2 số nguyên tố cùng nha
b)Gọi UCLN cua 2n+3 và 4n+7 là d
2n+3 chia hết cho d <=>4n+6 chia hết cho d
4n+7 chia hết cho d
=>4n+7-(4n+6) chia hết cho d
1 chia hết cho d
d=1
=>UCLN của 4n+7 và 2n+3 là 1=>4n+7 và 2n+3 là 2 số nguyên tố cùng nhau.
bài 5:
a) Ta có bảng:
a 1 2 3 4 6 12
b 12 6 4 3 2 1
Vậy (a,b) thuộc {(1;12)(2;6)(3;4)(4;3)(6;2)(12;1)}
b) Ta có bảng
a-1 1 7
b+2 7 1
a 2 8
b 5 -1
Mà a,b thuộc N Vậy a=2;b=5
c)
a=9a'
b=9b' với UCLN(a',b')=1
a+b=72
9(a'+b')=72
a'+b'=72 : 9=8
mà UCLN(a';b')=1 ta có bảng
a' 1 3 5 7
b' 7 5 3 1
a 9 27 45 63
b 63 45 27 9
vay a;b thuộc{(9;63)(27;45)(45;27)(6