Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Law Trafargal
Xem chi tiết
tthnew
29 tháng 9 2019 lúc 13:30

\(A=\left[\left(2x\right)^2+2.2x.y+y^2\right]+\left(16y^2-8y+1\right)\)

\(=\left(2x+y\right)^2+\left(4y-1\right)^2\ge0\)

Đẳng thức xảy ra khi \(x=-\frac{1}{8};y=\frac{1}{4}\)

\(B=\frac{2x^2-\left(x^2+2\right)}{x^2+2}=\frac{2x^2}{x^2+2}-2\ge-1\)

Đẳng thức xảy ra khi x =0

Tí làm tiếp

tthnew
29 tháng 9 2019 lúc 13:34

c)Đề sai:v

d) ĐK: \(x\ne1\). Bài này chỉ có min thôi nha!

\(D=\frac{3x^2-8x+6-2x^2+4x-2}{x^2-2x+1}+\frac{2\left(x^2-2x+1\right)}{x^2-2x+1}\)

\(=\frac{\left(x-2\right)^2}{\left(x-1\right)^2}+2\ge2\)

Đẳng thức xảy ra khi x = 2

Cao Thị Bích Ngọc
11 tháng 1 2021 lúc 18:30

Tìm GTNN của biểu thức sau:

B=\(\dfrac{-8+11}{x^2+5}\)    \(D=\dfrac{x^2-2x+2}{x^2+x+1}\)

\(C=\dfrac{-4x-1}{2x^2+1}\)

Thảo Lê
Xem chi tiết
Phía sau một cô gái
3 tháng 9 2021 lúc 20:15

\(C=x^2-4xy+5y^2+10x-22y+28\)

    \(=x^2-4xy+10x+4y^2+25-10y+y^2-2y+3\)

    \(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)

Vậy \(GTNN=2\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)

Nguyễn Hồng Vân
Xem chi tiết
Vũ Thị Hương Sen
Xem chi tiết
Daffodil Clover
Xem chi tiết
Trần baka
23 tháng 4 2019 lúc 22:41

\(\Leftrightarrow Qx^2+Q=10x^2+8x+4\)

\(\Leftrightarrow x^2\left(Q-10\right)-8x+Q-4=0\)(1)

*Neu Q = 10 thi x = ... (ban tu tinh nha)

*Neu Q # 10 thi pt (1) co nghiem khi va chi khi Delta' > 

Ta co \(\Delta'\ge0\)

\(\Leftrightarrow16-\left(Q-10\right)\left(Q-4\right)\ge0\)

\(\Leftrightarrow16-Q^2+14Q-40\ge0\)

\(\Leftrightarrow-Q^2+14Q-24\ge0\)

\(\Leftrightarrow2\le Q\le12\)

Ban tu tim dau "=" nha

Pé Kakiku_Oisidu
Xem chi tiết
do thi phuong nhung
Xem chi tiết
Trần Thị Hoa
29 tháng 9 2015 lúc 12:51

D=(x2 - 4xy + 4y2) +(y2 - 22y + 121) - 93

= (x-2y)2 + (y-11)2 - 93

Vì (x-2y)2 và (y-11)2 luôn lớn hơn 0 nên GTNN của biểu thức là -93

Khi đó y=11

và x=22

Nguyễn Thu Hiền
Xem chi tiết
Nguyễn Thu Hiền
14 tháng 4 2018 lúc 22:16

Các bạn giúp mình vs, mình đang cần gấp

_Guiltykamikk_
15 tháng 4 2018 lúc 8:27

Ta có : \(P=\frac{x^2-10x+22}{\left(x-3\right)^2}\)

Đặt : \(x-3=y\Leftrightarrow x=y+3\)

\(P=\frac{\left(y+3\right)^2-10\left(y+3\right)+22}{y^2}\)

\(P=\frac{y^2+6y+9-10y-30+22}{y^2}\)

\(P=\frac{y^2-4y+1}{y^2}\)

\(P=\frac{y^2}{y^2}-\frac{4y}{y^2}+\frac{1}{y^2}\)

\(P=1-\frac{4}{y}+\frac{1}{y^2}\)

\(P=\left(\frac{1}{y^2}-\frac{4}{y}+4\right)-3\)

\(P=\left(\frac{1}{y}-2\right)^2-3\)

Mà \(\left(\frac{1}{y}-2\right)^2\ge0\forall y\)

\(\Rightarrow P\ge-3\)

Dấu "=" xảy ra khi : 

\(\frac{1}{y}-2=0\Leftrightarrow\frac{1}{y}=2\Leftrightarrow y=\frac{1}{2}\) 

Lại có : \(x=y+3\)

\(\Rightarrow x=\frac{7}{2}\)

Vậy \(P_{Min}=-3\Leftrightarrow x=\frac{7}{2}\)

Trịnh Thị Bình
Xem chi tiết
Trà My
10 tháng 7 2017 lúc 10:28

\(M=-x^2+10x-25=-\left(x^2-10x+25\right)=-\left(x-5\right)^2\le0\)

maxM=0 khi x=5

có max thôi không có min