Cho tổng A=(x+y+z)-(t+h) trong đó x,y,z,t,h là các số nguyên khác nhau từ 1 đến 2009.Tìm GTLN và GTNN của A
Cho tổng A=(x+y+z)-(t+h) trong đó x,y,z,t,h là các số nguyên khác nhau từ 1 đến 2009.Tìm GTLN và GTNN của A
cho tổng A = (x+y+z)-(t+h).trong đó x,y,z,t,h là các số nguyên khác nhau từ 1 đến 2015.tìm giá trị lớn nhất và nhỏ nhất của A
Tìm gtln của A=|x-y|+|z-t|,trong đó x,y,z,t là các số nguyên khác nhau nhận các giá trị từ 1 đến 2003
Giả sử x > y, z > t.
Ta có \(A=x-y+z-t\le\left(2023+2022\right)-\left(1+2\right)=4042\).
Dấu bằng xảy ra khi x = 2023; y=1; z = 2022; t = 1.
tìm giá trị lớn nhất của A= Ix-yI+Iz-tI trong đó x,y,z,t là các số nguyên khác nhau nhận các giá trị từ 1 đến 2003
giúp mình nha
tìm giá trị lớn nhất của A= Ix-yI+Iz-tI trong đó x,y,z,t là các số nguyên khác nhau nhận các giá trị từ 1 đến 2003
giúp mình nha! Mình vội lắm
Cho tổng A = (a + b) – (c + d + e), trong đó a, b, c, d, e là các số nguyên khác nhau từ 1 đến 2020. Tìm GTLN và GTNN của A
help me minh tick cho minh can gap
Cho x,y,z,t là các số thực thỏa mãn: x >= y >= z >= t >= 0 và 5x + 4y + 3z + 6t = 20. Tìm GTNN và GTLN của G = x + y + z + t
(Bài này mình ko biết xài nhóm abel kiểu gì, mong các bạn giúp đỡ)
bài 1:CHo x,y,z dương thỏa mãn : 0 <= x<= 4<=y<=z<=7 và x+y+z=15.Tìm GTLN của p=xyz
bài 2: Cho a,b là 2 số tự nhiên khác 0 và a+b=n.Tìm GTLN,GTNN của Q=ab
bài 3: Tìm x,y thuộc z biết 5x^2 +2y^2 +10x + 4y =6
Cho x, y, z là các số thực thoả mãn điều kiện \(\dfrac{3x^2}{2}\)+ y2 + z2 +yz = 1. Tìm GTNN và GTLN của biểu thức A = x + y + z
\(\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)
\(\Rightarrow2\ge3x^2+2y^2+2z^2+y^2+z^2\)
\(\Leftrightarrow2\ge3\left(x^2+y^2+z^2\right)\)
Có: \(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)\le2\)
\(\Rightarrow\)\(A^2\le2\) \(\Leftrightarrow A\in\left[-\sqrt{2};\sqrt{2}\right]\)
minA=-1\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x+y+z=-\sqrt{2}\\x=y=z\end{matrix}\right.\) \(\Rightarrow x=y=z=-\dfrac{\sqrt{2}}{3}\)
maxA=1\(\Leftrightarrow\left\{{}\begin{matrix}x+y+z=\sqrt{2}\\x=y=z\end{matrix}\right.\) \(\Rightarrow x=y=z=\dfrac{\sqrt{2}}{3}\)