Câu 5 :A= 561 + 2531 + 12521 . CMR A chia hết cho 31
Cho A =5+5^2+5^3+5^4+...+5^2014+5^2015+5^2016
a) Tính A
b) CMR: A chia hết cho 6
c) CMR: A chia hết cho 31
CMR a)3^10+3^11+3^12 chia hết cho 13
b) 5^100+5^101+5^102 chia hết cho 31
a) \(3^{10}+3^{11}+3^{12}\)
⇔ \(3^{10}\left(1+3+3^2\right)\)
⇔ \(3^{10}.13\)
⇒ \(3^{10}.13\) chia hết cho 13
a) \(3^{10}+3^{11}+3^{12}=3^{10}\left(1+3+3^2\right)=3^{10}\cdot13⋮13\)
b) \(5^{100}+5^{101}+5^{102}=5^{100}\left(1+5+5^2\right)=5^{100}\cdot31⋮31\)
Cho A= 1+5^1+5^2+.....+5^59. CMR A chia hết cho 31
ta có:A=(1+5^1+5^2)+(5^3+5^4+5^5)+....+(5^57+5^58+5^59)
=31+31*5^3+....+31*5^57
=(1+5^3+....+5^57)*31
=>a chia hết cho 31
Ta thấy tổng A có tất cả 60 số hạng
Do 60 chia hết cho 3 nên ta chia tổng A thành 20 nhóm, mỗi nhóm 3 số hạng
\(A=1+5+5^2+...+5^{59}\)
\(=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{57}+5^{58}+5^{59}\right)\)
\(=\left(1+5+5^2\right)+5^3\left(1+5+5^2\right)+...+5^{57}\left(1+5+5^2\right)\)
\(=31+5^3.31+5^6.31+...+5^{57}.31\)
\(=31\left(1+5^3+5^6+...+5^{57}\right)⋮31\)
Vậy \(A⋮31\)(đpcm)
Câu 1: CMR 33n+2+5*23n+1 chia hết cho 19 ( n thuộc Z)
Câu 2: CMR 62n+1+5n+2 chia hết cho 31 ( n thuộc N)
Câu 3: Cho A=3105+4100.CMR A chia hết cho 13
Câu 4:CMR 7*52+12*6n chia hết cho 19 ( n thuộc Z)
Câu 5:Tìm số dư:
a)109345:17 b)570+750:12 c)2200:25
a, tìm các số từ nhiên a,b,c để số 356abc chia hết cho 5;7;9
b, cho S = 5+5^2+5^3+...+5^2013
cmr S chia hết cho 31
srtfkgiyttfetdreeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
b)S = 5 + 52 + 53 + ... + 52013
S = ( 5 + 52 + 53 ) +.... ( 52011 + 52012 + 52013 )
S = 5.( 1 + 5 + 52 ) + ... + 52011.( 1 + 5 + 52 )
S = 5.31 +...+ 52011.31
S = 31( 5 + ...52011 )
=> S chia hết cho 31
a) Dựa và dấu hiệu chia hết mà làm
Cho a,b là các số nguyên. CMR nếu 6a + 11b chia hết cho 31 thì a + 7b cũng chia hết cho 31. Cần gấp ạ
Ta có 6a + 11b chia hết cho 31
Vậy: 6a + 42b - 31b = 6x(a+7b) - 31xb chia hết cho 31
nên: 6x(a + 7b) chia hết cho 31
Do vậy: a + 7b chia hết cho 31 (đpcm)
cho a/b = 1/5+1/6 +1/7 +1/8 +.....+1/26 CMR a chia hết cho 31
CMR: A = 5 + 5^2 + 5^3 + ... + 5^99 chia hết cho 31
Giúp mình với mình đang cần gấp ạ
A = (5 +5^2+5^3) +(5^4+5^5+5^6)+...+(5^97+5^98+5^99)
= 5(1+5+5^2)+5^4(1+5+5^2)+...+5^97(1+5+5^2)
= 5.31+5^4.31+...+5^97.31
= 31(5+5^4+...+5^97) chia hết cho 31
Ta có công thức tổng của dãy số hình thành bởi lũy thừa của một số là:
S = a(1 - r^n)/(1 - r),
trong đó a là số hạng đầu tiên, r là công bội và n là số lượng số hạng.
Áp dụng công thức trên vào bài toán của chúng ta, ta có:
a = 5, r = 5 và n = 99.
Thay các giá trị vào, ta có:
S = 5(1 - 5^99)/(1 - 5).
Tuy nhiên, để xác định xem S có chia hết cho 31 hay không, ta cần tính S modulo 31.
Ta biết rằng nếu a ≡ b (mod m) và c ≡ d (mod m), thì a + c ≡ b + d (mod m) và a * c ≡ b * d (mod m).
Áp dụng tính chất này vào công thức trên, ta có:
S ≡ 5(1 - 5^99)/(1 - 5) ≡ 5(1 - 5^99)/(-4) ≡ -5(1 - 5^99)/4 (mod 31).
Tiếp theo, ta cần xác định giá trị của 5^99 modulo 31.
Ta biết rằng nếu a ≡ b (mod m), thì a^n ≡ b^n (mod m).
Áp dụng tính chất này vào bài toán của chúng ta, ta có:
5^99 ≡ (5^3)^33 ≡ 125^33 ≡ 4^33 (mod 31).
Tiếp tục, ta có thể tính giá trị của 4^33 modulo 31 bằng cách sử dụng phép lũy thừa modulo:
4^1 ≡ 4 (mod 31), 4^2 ≡ 16 (mod 31), 4^3 ≡ 2 (mod 31), 4^4 ≡ 8 (mod 31), 4^5 ≡ 1 (mod 31).
Do đó, ta có:
4^33 ≡ 4^5 * 4^4 * 4^4 * 4^4 * 4^4 * 4^4 * 4 ≡ 1 * 8 * 8 * 8 * 8 * 8 * 4 ≡ 4096 ≡ 1 (mod 31).
Vậy, chúng ta có:
S ≡ -5(1 - 5^99)/4 ≡ -5(1 - 1)/4 ≡ 0 (mod 31).
Kết quả là tổng A chia hết cho 31.
Bài 1: cmr 3^105 +4^105 chia hết cho 13
Bài 2 : cmr 2^70 +3^70 chia hết cho 13
Bài 3 : cmr
a)( 6^2n+1) + (5^n) +2 chia hết cho 31 với mọi n thuộc N*
b) (2^2^2n+1) + 3 chia hết cho 7 với mọi n thuộc N
Bài 5 : tìm dư trong phép chia
a) 1532 -1 cho 9
b)5^70 + 7^50 cho 12