Cho tam giác AOB có OA=OB .gọi D là trung điểm của AB
a, Chứng minh rằng tam giác AOD =tam giác BOD
b, Trên cạnh OA lấy điểm E ,trên cạnh OB lấy điểm F sao cho OE=OF.CMR:OD vuông góc với EF
c, CMR:góc EBA=góc FAB
1.Cho tam giác ABC có AC > AB. Trên cạnh AC lấy điểm E sao cho CE = AB. Gọi O là một điểm sao cho OA = OC, OB = OE. Chứng minh:
a) Tam giác AOB = COE
b) So sánh góc OAB và góc OCA?
2. Cho góc nhọn xOy. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Từ A kẻ đường thẳng vuông góc với Ox cắt Oy ở E, từ B kẻ đường thẳng vuông góc với Oy cắt Ox ở F. AE và BF cắt nhau tại I. Chứng minh:
a) AE = BF
b) Tam giác AFI = BEI
c) OI là tia phân giác của góc AOB
3. Cho tam giác ABC, D là trung điểm của AB, vẽ các tia Ax và By vuông góc với AB. Gọi C là điểm thuộc tia Ax. Đường vuông góc OC tại O cắt tia By ở D. Chứng minh rằng:
a) AD = EF
b) Tam giác ADE = EFC
c) AE = EC
nhầm ,vẽ hình ra mk cg k lm đc đâu đừng có vẽ nhé
Tự vẽ hình nha bạn
1)
a)xét tam giác AOB và COE có
OA=OC(GT)
OB+OE(GT)
AB=EC(GT)
Suy ra AOB=COE(c.c.c)
b) vì AOB=COE(câu a)
gócOAB=gócOCA(hai góc tương ứng)
Bạn nào biết làm bài 2 với bài 3 không?
Trên tia Ox lấy điểm A trên Oy lấy điểm B sao cho OA = OB . Trên Ox lấy C tên By lấy B sao cho AC = BD Gọi E là trung điểm tam giác AOB = BOC
A)Chứng minh tam giác AOB = BOC
B)Chứng minh EA = EB , EC = ED
C)Cho góc xoy = 50 độ tính EOB
;-; help me
cho góc nhọn xoy . Trên cạnh Ox lấy 2 điểm A,B( góc OA<OB) và trên cạnh Oy lấy 2 điểm C và D sao cho góc OA=góc OC, góc OB = góc OD
a) chứng minh tam giác OAD= tam giác OCB
b) gọi M là giao điểm của AD và BC chứng minh tam giác AMB=tam giác CMD
c) chứng minh Om là tia phân giác của góc xOy
d)gọi e là trung điểm của DB chứng minh o,m,e thẳng hàng
Cho tam giác nhọn AOB. Trên tia đối của tia OA lấy điểm C sao cho OC = OA. Trên tia đối của OB lấy điểm D sao cho OD = OB. Chứng minh tam giác ABC bằng tam giác OCD. Từ B kẻ BH vuông góc với AC, từ D kẻ DK vuông góc với AC. Chứng minh rằng BH = DK. Trên tia AB lấy điểm M, trên tia DC lấy điểm N sao cho BM = DN. Chứng minh rằng ba điểm M,O,N thẳng hàng.
a: Sửa đề: Chứng minh ΔOCD=ΔOAB
Xét ΔOCD và ΔOAB có
OC=OA
\(\widehat{COD}=\widehat{AOB}\)(hai góc đối đỉnh)
OD=OB
Do đó: ΔOCD=ΔOAB
b: Xét ΔBHO vuông tại H và ΔDKO vuông tại K có
BO=DO
\(\widehat{BOH}=\widehat{DOK}\)(hai góc đối đỉnh)
Do đó: ΔBHO=ΔDKO
=>BH=DK
c: ta có;ΔOBA=ΔODC
=>\(\widehat{OBA}=\widehat{ODC}\)
Xét ΔMBO và ΔNDO có
MB=ND
\(\widehat{MBO}=\widehat{NDO}\)
BO=DO
Do đó: ΔMBO=ΔNDO
=>\(\widehat{MOB}=\widehat{NOD}\)
mà \(\widehat{MOB}+\widehat{MOD}=180^0\)(hai góc kề bù)
nên \(\widehat{NOD}+\widehat{MOD}=180^0\)
=>\(\widehat{MON}=180^0\)
=>M,O,N thẳng hàng
Cho tam giác nhọn AOB. Trên tia đối của tia OA lấy điểm C sao cho OC = OA. Trên tia đối của OB lấy điểm D sao cho OD = OB. Chứng minh tam giác ABC bằng tam giác OCD. Từ B kẻ BH vuông góc với AC, từ D kẻ DK vuông góc với AC. Chứng minh rằng BH = DK. Trên tia AB lấy điểm M, trên tia DC lấy điểm N sao cho BM = DN. Chứng minh rằng ba điểm M,O,N thẳng hàng.
a: Sửa đề: Chứng minh ΔOCD=ΔOAB
Xét ΔOCD và ΔOAB có
OC=OA
\(\widehat{COD}=\widehat{AOB}\)(hai góc đối đỉnh)
OD=OB
Do đó: ΔOCD=ΔOAB
b: Xét ΔBHO vuông tại H và ΔDKO vuông tại K có
BO=DO
\(\widehat{BOH}=\widehat{DOK}\)(hai góc đối đỉnh)
Do đó: ΔBHO=ΔDKO
=>BH=DK
c: ta có;ΔOBA=ΔODC
=>\(\widehat{OBA}=\widehat{ODC}\)
Xét ΔMBO và ΔNDO có
MB=ND
\(\widehat{MBO}=\widehat{NDO}\)
BO=DO
Do đó: ΔMBO=ΔNDO
=>\(\widehat{MOB}=\widehat{NOD}\)
mà \(\widehat{MOB}+\widehat{MOD}=180^0\)(hai góc kề bù)
nên \(\widehat{NOD}+\widehat{MOD}=180^0\)
=>\(\widehat{MON}=180^0\)
=>M,O,N thẳng hàng
Cho tam giác ABC.Trên cạnh BC lấy điểm D, trên cạnh AC lấy điểm E,gọi O là giao điểm của AD và CE.Biết OA=36cm,OD=9cm,OB=OE=18cm
a)Tam giác BOD có đồng dạng với tam giác AOE không?Vì sao?
b)Chứng minh tam giác ADC đồng dạng với tam giác BEC
c)Tính các cạnh của AC và BC của tam giác ABC
a: Xét ΔBOD và ΔAOE có
OB/OA=OD/OE
góc BOD=góc AOE
=>ΔBOD đồng dạng với ΔAOE
b: ΔBOD đồng dạng với ΔAOE
=>góc BDO=góc AEO
=>góc CEB=góc CDA
mà góc C chung
nên ΔCEB đồng dạng với ΔCDA
cho tam giác aob có oa=ob lấy điểm d trên cạnh oa ,điểm e trên cạnh ob sao cho od=oe.chứng minh ae=bd
Xét ΔOAB có OA=OB(gt)
nên ΔOAB cân tại O(Định nghĩa tam giác cân)
⇒\(\widehat{OAB}=\widehat{OBA}\)(hai góc ở đáy)
hay \(\widehat{DAB}=\widehat{EBA}\)
Ta có: OD+DA=OA(D nằm giữa O và A)
OE+EB=OB(E nằm giữa O và B)
mà OA=OB(gt)
và OD=OE(gt)
nên DA=EB
Xét ΔDAB và ΔEBA có
DA=EB(cmt)
\(\widehat{DAB}=\widehat{EBA}\)(cmt)
AB chung
Do đó: ΔDAB=ΔEBA(c-g-c)
⇒BD=AE(hai cạnh tương ứng)
cho tam giác ABC có AC>AB. Trên cạnh AC lấy E sao cho CE=AB. Gọi O là 1 điểm sao cho OA= OC, OB= OE. Chứng minh:a, tam giác AOB= tam giác COEb, so sánh góc OAB và góc OCA(VẼ HÌNH)
a) Xét \(\Delta\)AOB và \(\Delta\)EOC có :
\(\hept{\begin{cases}OA=OC\left(gt\right)\\OB=0E\left(gt\right)\\CE=AB\left(gt\right)\end{cases}\Rightarrow\Delta AOB=\Delta COE\left(c.c.c\right)}\)
b) => \(\widehat{OAB}=\widehat{OCA}\)(góc tương ứng)
Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A,C. Trên tia Oy lấy hai điểm B và D sao cho OA = OB , AC = BD. a) Chứng minh tam giác AOD = tam giác BOC b) Gọi E là giao điểm AD và BC, chứng minh tam giác EAC bằng tam giác EBD. c) chứng minh OE là phân giác của góc xOy và OE vuông góc với CD . Mọi người giúp mình câu c nhé, mình like cho
Ta có
OB=OA (gt); BD=AC (gt)
=> OB+BD=OA+AC => OD=OC
Xét tg AOD và tg BOC có
OD=OC (cmt); OA=OB (gt); \(\widehat{xOy}\) chung => tg AOD = tg BOC (c.g.c)
b/
Ta có tg AOD = tg BOC (cmt)
\(\Rightarrow\widehat{OAD}=\widehat{OBC}\)
\(\widehat{OAD}+\widehat{CAE}=\widehat{OAC}=180^o\)
\(\widehat{OBC}+\widehat{DBE}=\widehat{OBD}=180^o\)
\(\Rightarrow\widehat{OAC}=\widehat{OBD}\)
Xét tg EAC và tg EBD có
\(\widehat{OAC}=\widehat{OBD}\) (cmt)
tg AOD = tg BOC (cmt) \(\Rightarrow\widehat{ACE}=\widehat{BDE}\)
AC=BD (gt)
=> tg EAC = tg EBD (g.c.g)
c/
Xét tg OAE và tg OBE có
OA=OB (gt); OE chung
tg EAC = tg EBD (cmt) => AE=BE
=> tg OAE = tg OBE (c.c.c) \(\Rightarrow\widehat{xOE}=\widehat{yOE}\) => OE là phân giác góc \(\widehat{xOy}\)
Xét tg OCD có
OC=OD (cmt) => tg OCD cân tại O
\(\widehat{xOE}=\widehat{yOE}\) (cmt)
\(\Rightarrow OE\perp CD\) (trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường cao)