Cho p= abc (có gạch trên đầu) là một số nguyên tố. Chứng minh rằng phương trình ax^2+ bx+c=0 không có nghiệm hữu tỉ
Cho phương trình \(ax^2+bx+c=0\) có các hệ số a, b, c là các số nguyên lẻ. Chứng minh rằng nếu phương trình có nghiệm thì các nghiệm ấy không thể là số hữu tỉ.
BÀI TOÁN PHỤ: CHứng minh rằng số chính phương lẻ chia cho 8 dư 1.
Giải: Xét số chính phương lẻ là \(m^2\left(m\in Z\right)\)
Như vậy m là số lẻ, đặt \(m=2n+1\)
Ta có:
\(m^2=\left(2n+1\right)^2=4n^2+4n+1=4.n.\left(n+1\right)+1\)
Vì n(n+1) là tích 2 số nguyên liên tiếp nên chia hết cho 2
\(\Rightarrow4n\left(n+1\right) \) chia hết cho 8
\(\Rightarrow4.n.\left(n+1\right)+1\) chia 8 dư 1
Vậy ta có điều phải chứng minh.
Vì a lẻ nên \(a\ne0\), phương trình \(ax^2+bx+c=0\) là phương trình bậc hai.
Xét \(\Delta=b^2-4ac\): b lẻ, theo bài toán phụ có \(b^2=8k+1\left(k\in Z\right)\)
a,c lẻ \(\Rightarrow\) \(ac\) lẻ
Đặt \(ac=2l-1\left(l\in Z\right)\)
Do đó \(\Delta=b^2-4ac=8k+1-4.\left(2l-1\right)=8k+1-8l+4=8\left(k-l\right)+5 \)chia cho 8 dư 5, theo bài toán phụ trên ta có \(\Delta\) không phải số chính phương.
\(\Delta\) là số nguyên, không phải óố chính phương \(\Rightarrow\sqrt{\Delta}\) là số vô tỉ
Nghiệm của phương trình đã cho (nếu có) là: \(x=\frac{-b\pm\sqrt{\Delta}}{2a}\)
b,a\(\in Z\), \(\sqrt{\Delta}\) vô tỉ nên x là vô tỉ.
Vậy phương trình có nghiệm nếu có thì các nghiệm ấy không thể là số hữu tỉ.
ơng là phươngax2+bx+c=0
Bài này có sự liên quan giữa các số lẻ a;b;c không? ( không = khó )
ax^2 +bx +c = 0 (*)
(*) có nghiệm hữa tỷ <=> Δ = b^2 - 4ac là số chính phương lẻ
(vì 4ac chẵn và b lẻ)
Δ là số chính phương lẻ nên Δ chia 8 dư 1 (*)
với a, b , c là số nguyên lẻ nên có dạng:
a = 2m + 1; b = 2n +1; c = 2p + 1 ( m,n,p là số nguyên)
=> Δ = (2n +1)^2 - 4(2m+1)(2p+1)
= 4n^2 + 4n + 1 - 4(4mp + 2m + 2p + 1)
= 4n(n+1) - 8(mp + m + p) - 3 = 4n(n+1) - 8(mp + m + p) - 8 + 5
vì 4n(n+1) - 8(mp + m + p) - 8 chia hết cho 8 => Δ chia 8 dư 5 mâu thuẩn với (*)
=> đpcm.
-------------------------
chứng minh (*):
A = (2k+1)^2 = 4k^2 + 4k + 1 = 4k(k + 1) + 1
k(k + 1) là tích 2 số nguyên liêu tiếp chia hết cho 2
=> 4k(k + 1) chia hết cho 8
=> A chia 8 dư 1
Chứng minh phản chứng: cho a,b,c là các số nguyên. Biết phương trình ax^2+bx+c có nghiệm hữu tỉ. chứng minh rằng trong ba số nguyên a,b,c có ít nhất 1 số chẵn
Cho P=abc là số nguyên tố
CMR pt Ax2+Bx+C=0 không có nghiệm hữu tỉ
Cho đa thức f(x) = ax2 + bx + c với a, b, c là các hệ số nguyên sao cho abc là số nguyên tố có 3 chữ số. Chứng minh rằng : f(x) không có nghiệm hữu tỉ.
Cho phương trình ax2+bx+c=0 và a,b,c là các số nguyên lẻ. Chúng minh rằng nếu phương trình đó có nghiệm thì ngiệm đó không thể là số nguyên
Cho số nguyên tố p=abc
CMR : PT ax2 +bx+c=0 không có nghiệm hữu tỉ.
cho phương trình ax^2+bx+c=0 với các số a,b,c là các số thực nghiệm khác 0 và thỏa mãn điều kiện a+b+2c=0. Chứng minh rằng phương trình trên luôn có nghiệm trên tập số thực
Đặt \(f\left(x\right)=ax^2+bx+c\).
\(f\left(0\right)=c;f\left(1\right)=a+b+c\)
Do \(a+b+2c=0\) nên c và \(a+b+c\) trái dấu. Suy ra f(0)f(1) < 0 nên f(x) = 0 luôn có ít nhất 1 nghiệm tren (0; 1).
Chứng minh rằng nếu số abc là số nguyên tố thù pt sau không có nghiệm hữu tỉ ax^2 + bx + c = 0
Ta có:$\Delta =b^{2}-4ac$
Xét $\Delta \geq 0$
Giả sử pt đó có nghiệm hữu tỉ nên $\Delta =x^{2}$
Suy ra $(b+x)(b-x)=4ac$
Vì b,x cùng tính chẵn lẽ nên b+x chẵn;b-x chẵn
Ta xét các TH sau:
$\left\{\begin{matrix} b+x=a\\b-x=4c \end{matrix}\right.$
Mà $b+x\geq b-x\Rightarrow a\geq 4c$ nên c=1 (vì c lẻ )
Thay c=1 vào ta đc: $\left\{\begin{matrix} b=\frac{a}{2}+2\\ x=\frac{a}{2}-2 \end{matrix}\right.$
Thế vào ta tìm đc a=0(vô lý)
Xét $\left\{\begin{matrix} b+x=2ac\\b-x=2 \end{matrix}\right.$
Tương tự ta cũng có: $2ac\geq 2\Rightarrow ac\geq 1\Rightarrow a=1;c=1$
Tính được b=2 khi đó $\overline{abc}=121=11^{2}$ ko phải là số nguyên tố
Xét $\left\{\begin{matrix} b+x=2a\\b-x=2c \end{matrix}\right.$
Ta chứng minh đc a>c
Suy ra b=a+c
Khi đó $\overline{abc}=110a+11c\vdots 11$ ko phải là số nguyên tố.
Vậy điều giả sử sai nên ta có đpcm
cho a,b,c là 3 số dương có tổng bằng 12
chứng minh rằng trong 3 phương trình :
x^2 + ax + b =0
x^2+bx+c = 0
x^2 + cx +a =0
có một phương trình vô nghiệm , một phương trình có nghiệm
Các giải của các bài toán này là sử dụng tổng các delta em nhé