Bài 6: Hệ thức Vi-et và ứng dụng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thanh Xuân

Chứng minh rằng nếu số abc là số nguyên tố thù pt sau không có nghiệm hữu tỉ ax^2 + bx + c = 0

Nguyễn Thành Trương
17 tháng 2 2019 lúc 13:49

Ta có:$\Delta =b^{2}-4ac$
Xét $\Delta \geq 0$
Giả sử pt đó có nghiệm hữu tỉ nên $\Delta =x^{2}$
Suy ra $(b+x)(b-x)=4ac$
Vì b,x cùng tính chẵn lẽ nên b+x chẵn;b-x chẵn
Ta xét các TH sau:
$\left\{\begin{matrix} b+x=a\\b-x=4c \end{matrix}\right.$
Mà $b+x\geq b-x\Rightarrow a\geq 4c$ nên c=1 (vì c lẻ )
Thay c=1 vào ta đc: $\left\{\begin{matrix} b=\frac{a}{2}+2\\ x=\frac{a}{2}-2 \end{matrix}\right.$
Thế vào ta tìm đc a=0(vô lý)
Xét $\left\{\begin{matrix} b+x=2ac\\b-x=2 \end{matrix}\right.$
Tương tự ta cũng có: $2ac\geq 2\Rightarrow ac\geq 1\Rightarrow a=1;c=1$
Tính được b=2 khi đó $\overline{abc}=121=11^{2}$ ko phải là số nguyên tố
Xét $\left\{\begin{matrix} b+x=2a\\b-x=2c \end{matrix}\right.$
Ta chứng minh đc a>c
Suy ra b=a+c
Khi đó $\overline{abc}=110a+11c\vdots 11$ ko phải là số nguyên tố.
Vậy điều giả sử sai nên ta có đpcm


Các câu hỏi tương tự
Đoàn Đỗ Đăng Khoa
Xem chi tiết
Cold Wind
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Dương Anh
Xem chi tiết
Đạt Trần Tiến
Xem chi tiết
Nguyễn Tuấn Duy
Xem chi tiết
Nguyễn Văn Minh
Xem chi tiết
Thảo Đinh Thị Phương
Xem chi tiết
Đặng Ngọc Trân
Xem chi tiết