\(\frac{27}{23}+\frac{5}{21}-\frac{4}{23}+\frac{6}{21}+\frac{1}{2}\)
\(\frac{4}{23}+\frac{15}{21}-\frac{27}{23}+\frac{6}{21}+\frac{1}{2}\)
\(\frac{4}{23}+\frac{15}{21}-\frac{27}{23}+\frac{6}{21}+\frac{1}{2}=\left(\frac{4}{23}-\frac{27}{23}\right)+\left(\frac{15}{21}+\frac{6}{21}\right)+\frac{1}{2}=-1+1+\frac{1}{2}=0+\frac{1}{2}=\frac{1}{2}\)
a.\(\frac{27}{12}+\frac{5}{21}-\frac{4}{23}+\frac{6}{21}+\frac{1}{2}\)
b.\(\frac{1}{2}+(-\frac{1}{7})-(\frac{-1}{13})+\frac{-1}{3}-(\frac{-2}{5})+\frac{-11}{21}+\frac{1}{10}\)
Tính giá trị biểu thức
\(1.A=\frac{1}{5}+\frac{3}{17}-\frac{4}{3}+\left(\frac{4}{5}-\frac{3}{17}+\frac{1}{3}\right)-\frac{1}{7}+\left[\frac{-14}{30}\right]\)
\(2.B=\left(\frac{5}{8}-\frac{4}{12}+\frac{3}{2}\right)-\left(\frac{5}{8}+\frac{9}{13}\right)-\left[\frac{-3}{2}\right]+\frac{7}{-15}\)
\(3.C=\frac{5}{18}+\frac{8}{19}-\frac{7}{21}+\left(\frac{-10}{36}+\frac{11}{19}+\frac{1}{3}\right)-\frac{5}{8}\)
\(4.D=\frac{1}{9}-\left[\frac{-5}{23}\right]-\left(\frac{-5}{23}+\frac{1}{9}+\frac{25}{7}\right)+\frac{50}{14}-\frac{7}{30}\)
\(5.E=\frac{1}{13}+\left(\frac{-5}{18}-\frac{1}{13}+\frac{12}{17}\right)+\left(\frac{12}{17}+\frac{5}{18}+\frac{7}{5}\right)\)
\(6.F=\frac{15}{14}-\left(\frac{17}{23}-\frac{80}{87}+\frac{5}{4}\right)+\left(\frac{12}{17}-\frac{15}{14}+\frac{1}{4}\right)\)
\(7.G=\frac{1}{25}-\frac{4}{27}+\left(\frac{-23}{27}+\frac{-1}{25}-\frac{5}{43}\right)+\frac{5}{43}-\frac{4}{7}\)
\(8.H=\frac{4}{15}-\frac{23}{28}-\left(\frac{-23}{28}+\frac{-11}{15}-\frac{29}{27}\right)-\frac{2}{27}\)
\(9.K=\frac{1}{16}-\frac{5}{21}+\left(\frac{-1}{16}+\frac{-3}{5}-\frac{-5}{21}\right)+\frac{-2}{5}+\frac{3}{4}\)
\(10.L=\frac{7}{12}+\frac{15}{14}-\left(\frac{14}{22}+\frac{-1}{14}+\frac{5}{21}\right)-\frac{-5}{21}+\frac{3}{5}\)
yutyugubhujyikiu
a)\(\frac{16}{21}+\frac{4}{23}+\frac{5}{21}-\frac{4}{23}-\frac{5}{21}\)
b)\(\left(\frac{3}{4}\right)^3:\left(\frac{3}{4}\right)^2\)
c)\(\frac{1}{3}.\frac{-4}{5}+\frac{1}{3}.\frac{-6}{5}\)
\(a.=\frac{16}{21}+\left(\frac{5}{21}-\frac{5}{21}\right)+\left(\frac{4}{23}-\frac{4}{23}\right).\)
\(=\frac{16}{21}+0+0=\frac{16}{21}\)
\(b.=\left(\frac{3}{4}\right)^{3-2}=\left(\frac{3}{4}\right)^1=\frac{3}{4}\)
\(c.=\frac{1}{3}.\left(\frac{-4}{5}+\frac{-6}{5}\right)\)
\(=\frac{1}{3}.\left(-2\right)=\frac{-2}{3}\)
Nhớ k cho mình nhé! Thank you!!!
\(\frac{13}{25}+\frac{6}{41}-\frac{38}{25}+\frac{35}{41}-\frac{1}{2}\)
\(1\frac{4}{23}+\frac{5}{21}-\frac{4}{23}+0,5+\frac{16}{21}\)
\(\frac{13}{25}+\frac{6}{41}-\frac{38}{25}+\frac{35}{41}-\frac{1}{2}\)
\(=\left(\frac{13}{25}-\frac{38}{25}\right)+\left(\frac{6}{41}+\frac{35}{41}\right)-\frac{1}{2}\)
\(=-1+1-\frac{1}{2}=0-\frac{1}{2}\)
\(=\frac{-1}{2}\)
\(1\frac{4}{23}+\frac{5}{21}-\frac{4}{23}+0,5+\frac{16}{21}\)
\(=\left(1\frac{4}{23}-\frac{4}{23}\right)+\left(\frac{5}{21}+\frac{16}{21}\right)+0,5\)
\(=1+1+0,5=2,5\)
\(\frac{13}{25}+\frac{4}{41}-\frac{38}{25}+\frac{35}{41}-\frac{1}{2}\)
= \(\left(\frac{13}{25}-\frac{38}{25}\right)+\left(\frac{6}{41}+\frac{35}{41}\right)-\frac{1}{2}\)
= \(-1+1-\frac{1}{2}=-\frac{1}{2}\)
\(1\frac{4}{23}+\frac{5}{21}-\frac{4}{23}+0,5+\frac{16}{21}\)
=\(\left(1\frac{4}{23}-\frac{4}{23}\right)+\left(\frac{5}{21}+\frac{16}{21}\right)+0,5\)
= \(1+1+0,5=2,5\)
\(\frac{29-x}{21}+\frac{27-x}{23}+\frac{25-x}{25}+\frac{23-x}{27}+\frac{21-x}{29}=-5\)-5
\(\frac{29-x}{21}+\frac{27-x}{23}+\frac{25-x}{25}+\frac{23-x}{27}+\frac{21-x}{29}=-5.\)
\(\left(\frac{29-x}{21}+1\right)+\left(\frac{27-x}{23}+1\right)+\left(\frac{25-x}{25}+1\right)+\left(\frac{23-x}{27}+1\right)+\left(\frac{21-x}{29}+1\right)\)\(=0\)
\(\frac{50-x}{21}+\frac{50-x}{23}+\frac{50-x}{25}+\frac{50-x}{27}+\frac{50-x}{29}=0\)
\(\left(50-x\right).\left(\frac{1}{21}+\frac{1}{23}+\frac{1}{25}+\frac{1}{27}+\frac{1}{29}\right)=0\)
=> 50 - x = 0 \(\left(\frac{1}{21}+\frac{1}{23}+\frac{1}{25}+\frac{1}{27}+\frac{1}{29}\ne0\right)\)
=> x = 50
\(1\frac{4}{23}+\frac{5}{21}-\frac{4}{23}+0,5+\frac{16}{21}\)
\(\sqrt{\frac{25}{81}}:2\frac{2}{5}-4\frac{5}{9}:2\frac{2}{5}\)
\(6.\left(-\frac{-1}{2}\right)^2+\frac{3}{5}\)
a) \(1\frac{4}{23}+\frac{5}{21}-\frac{4}{23}+0,5+\frac{16}{21}\)
\(=\left(1\frac{4}{23}-\frac{4}{23}\right)+\left(\frac{5}{21}+\frac{16}{21}\right)+0,5\)
\(=1+1+0,5\)
\(=2+0,5\)
\(=2,5.\)
b) \(\sqrt{\frac{25}{81}}:2\frac{2}{5}-4\frac{5}{9}:2\frac{2}{5}\)
\(=\frac{5}{9}:\frac{12}{5}-\frac{41}{9}:\frac{12}{5}\)
\(=\left(\frac{5}{9}-\frac{41}{9}\right):\frac{12}{5}\)
\(=\left(-4\right):\frac{12}{5}\)
\(=-\frac{5}{3}.\)
c) \(6.\left(-\frac{-1}{2}\right)^2+\frac{3}{5}\)
\(=6.\left(\frac{1}{2}\right)^2+\frac{3}{5}\)
\(=6.\frac{1}{4}+\frac{3}{5}\)
\(=\frac{3}{2}+\frac{3}{5}\)
\(=\frac{21}{10}.\)
Chúc bạn học tốt!
Giải phương trình
a,\(\frac{x-5}{100}+\frac{x-4}{101}+\frac{x-3}{102}=\frac{x-100}{5}+\frac{x-101}{4}+\frac{x-102}{3}\)
b, \(\frac{29-x}{21}+\frac{27-x}{23}+\frac{25-x}{25}+\frac{23-x}{27}+\frac{21-x}{29}=-5\)
a) \(\frac{x-5}{100}+\frac{x-4}{101}+\frac{x-3}{102}=\frac{x-100}{5}+\frac{x-101}{4}+\frac{x-102}{3}\)
\(\Leftrightarrow\left(\frac{x-5}{100}-1\right)+\left(\frac{x-4}{101}-1\right)+\left(\frac{x-3}{102}-1\right)=\left(\frac{x-100}{5}-1\right)+\left(\frac{x-101}{4}-1\right)+\left(\frac{x-102}{3}-1\right)\)
\(\Leftrightarrow\frac{x-105}{100}+\frac{x-105}{101}+\frac{x-105}{102}=\frac{x-105}{5}+\frac{x-105}{4}+\frac{x-105}{3}\)
\(\Leftrightarrow\left(x-105\right)\left(\frac{1}{100}+\frac{1}{101}+\frac{1}{102}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\right)=0\)
\(\Leftrightarrow x=105\)
b) \(\frac{29-x}{21}+\frac{27-x}{23}+\frac{25-x}{25}+\frac{23-x}{27}+\frac{21-x}{29}=-5\)
\(\Leftrightarrow\left(\frac{29-x}{21}+1\right)+\left(\frac{27-x}{23}+1\right)+\left(\frac{25-x}{25}+1\right)+\left(\frac{23-x}{27}+1\right)+\left(\frac{21-x}{29}+1\right)=0\)
\(\Leftrightarrow\frac{50-x}{21}+\frac{50-x}{23}+\frac{50-x}{25}+\frac{50-x}{27}+\frac{50-x}{29}=0\)
\(\Leftrightarrow\left(50-x\right)\left(\frac{1}{21}+\frac{1}{23}+\frac{1}{25}+\frac{1}{27}+\frac{1}{29}\right)=0\)
\(\Leftrightarrow x=50\)
Bài3. Giải phương trình
a/ \(\frac{x-5}{100}+\frac{x-4}{101}+\frac{x-3}{102}=\frac{x-100}{5}+\frac{x-101}{4}+\frac{102}{3}\)
b/ \(\frac{29-x}{21}+\frac{27-x}{23}+\frac{25-x}{25}+\frac{23-x}{27}+\frac{21-x}{29}=-5\)
a. \(\frac{x-5}{100}+\frac{x-4}{101}+\frac{x-3}{102}=\frac{x-100}{5}+\frac{x-101}{4}+\frac{x-102}{3}\)
\(\Rightarrow\frac{x-5}{100}-1+\frac{x-4}{101}-1+\frac{x-3}{102}-1=\frac{x-100}{5}-1+\frac{x-101}{4}-1+\frac{x-102}{3}-1\)
\(\Rightarrow\frac{x-105}{100}+\frac{x-105}{101}+\frac{x-105}{102}-\frac{x-105}{5}-\frac{x-105}{4}-\frac{x-105}{3}=0\)
\(\Rightarrow\left(x-105\right)\left(\frac{1}{100}+\frac{1}{101}+\frac{1}{102}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\right)=0\)
\(\Rightarrow x-105=0\left(\frac{1}{100}+\frac{1}{101}+\frac{1}{102}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\ne0\right)\)
\(\Rightarrow x=105\)
b. \(\frac{29-x}{21}+\frac{27-x}{23}+\frac{25-x}{25}+\frac{23-x}{27}+\frac{21-x}{29}=-5\)
\(\Rightarrow\frac{29-x}{21}+1+\frac{27-x}{23}+1+\frac{25-x}{25}+1+\frac{23-x}{27}+1+\frac{21-x}{29}+1=0\)
\(\Rightarrow\frac{50-x}{21}+\frac{50-x}{23}+\frac{50-x}{25}+\frac{50-x}{27}+\frac{50-x}{29}=0\)
\(\Rightarrow\left(50-x\right)\left(\frac{1}{21}+\frac{1}{23}+\frac{1}{25}+\frac{1}{27}+\frac{1}{29}\right)=0\)
\(\Rightarrow50-x=0\left(\frac{1}{21}+\frac{1}{23}+\frac{1}{25}+\frac{1}{27}+\frac{1}{29}\ne0\right)\)
\(\Rightarrow x=50\)
a) \(\frac{x-5}{100}+\frac{x-4}{101}+\frac{x-3}{102}=\frac{x-100}{5}+\frac{x-101}{4}+\frac{x-102}{3}\)
\(\Leftrightarrow\frac{x-5}{100}-1+\frac{x-4}{101}-1+\frac{x-3}{102}-1=\frac{x-100}{5}-1+\frac{x-101}{4}-1+\frac{x-102}{3}-1\)
\(\Leftrightarrow\frac{x-105}{100}+\frac{x-105}{101}+\frac{x-105}{102}=\frac{x-105}{5}+\frac{x-105}{4}+\frac{x-105}{3}\)
\(\Leftrightarrow\left(x-105\right)\left(\frac{1}{100}+\frac{1}{101}+\frac{1}{102}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\right)=0\)
Dễ dàng thấy nhân tử thứ hai luôn bé thua 0 nên \(x-105=0\)\(\Leftrightarrow x=105\)
b) Kĩ thuật làm tương tự câu a cộng mỗi phân số VT với 1 thì VP=0 và ta có nhân tử chung 50-x