chứng minh rằng 2008^n+1-2008^nchia hết cho 2007 (với n là số tự nhiên)
Chứng minh rằng số tự nhiên A chia hết cho 2009, với:
A=1.2.3...2007.2008(1+1/2+....+1/2007+1/2008)
Ta có: \(A=1\cdot2\cdot3\cdot...\cdot2007\cdot2008\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}\right)\)
\(A=2008!\left[\left(1+\frac{1}{2008}\right)+\left(\frac{1}{2}+\frac{1}{2007}\right)+...+\left(\frac{1}{1004}+\frac{1}{1005}\right)\right]\)
\(A=2008!\left(\frac{2009}{2008}+\frac{2009}{2\cdot2007}+...+\frac{2009}{1004\cdot1005}\right)\)
\(A=\frac{2009!}{2008}+\frac{2009!}{2\cdot2007}+...+\frac{2009!}{1004\cdot1005}\)
\(A=2009\left(2\cdot3\cdot...\cdot2017+3\cdot4\cdot...\cdot2016\cdot2018+2\cdot3\cdot...\cdot1003\cdot1006\cdot...\cdot2018\right)\)
chia hết cho 2019
=> đpcm
a) Cho 2 số tự nhiên chi cho 3 dư 1. Chứng tỏ rằng tích của chúng là 1 số chia 3 cũng có số dư là 1.
b) Tìm các số tự nhiên n thỏa mãn :
A = 2008^n + 2008.n + 2008 chia hết cho 3
Tk mình đi mọi người mình bị âm nè!
Ai tk mình mình tk lại cho
Bài 1: Chứng minh rằng:
a) 301293 -1 chia hết cho 9
b) 2093n - 803n - 464n - 261n chia hết cho 271
c) 62n + 3n+2.3n chia hết cho 11
d) 52n+1 . 2n+2 + 3n+2 . 2n+1 chia hết cho 19
Bài 2: So sánh:
a) 3281 và 3190
b) 11022009 - 11022008 và 11022008 - 11022007
c) A=(20082007 + 20072007)2008 và B=(20082008 + 20072008)2007
Các bạn giúp mình với nhé.Phải có đầy đủ cả cách làm mới tích
cho a = 11...1 có 2008 chữ số 1 ; b = 100...05 có 2007 chữ số 0. chứng minh căn ab+ 1 là số tự nhiên.
Ta có:
\(a=11...1=\frac{10^{2008}-1}{9}\)
\(b=100...05=10...0+5=10^{2008}+5\)
\(\Rightarrow ab+1=\frac{\left(10^{2008}-1\right)\left(10^{2008}+5\right)}{9}+1\)
\(=\frac{\left(10^{2008}\right)^2+4.10^{2008}-5+9}{9}\)
\(=\left(\frac{10^{2008}+2}{3}\right)^2\)
\(\Rightarrow\sqrt{ab+1}=\sqrt{\left(\frac{10^{2008}+2}{3}\right)^2}=\frac{10^{2008}+2}{3}\)
Ta thấy:
\(10^{2008}+2=10...02⋮3\Rightarrow\frac{10^{2008}+2}{3}\in N\)
Hay \(\sqrt{ab+1}\) là số tự nhiên (Đpcm)
* Cho a, b, c ≥ 0. Chứng minh rằng a+b+c ≥ \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
* Chứng minh rằng A=\(\sqrt{1+2008^2+\dfrac{2008^2}{2009^2}}+\dfrac{2008}{2009}\)có giá trị là số tự nhiên
Bài 1:
Ta có: \(a+b\ge2\sqrt{ab}\)
\(b+c\ge2\sqrt{bc}\)
\(a+c\ge2\sqrt{ac}\)
Do đó: \(2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\)
hay \(a+b+c\ge\sqrt{ab}+\sqrt{cb}+\sqrt{ac}\)
cho a+1 và b+2007 chia hết cho 6 chứng minh rằng 4^n +a +b chia hết cho 6 với mọi n là số tự nhiên khác 0
Lời giải:
Đặt $a+1=6k, b+2007=6m$ với $k,m\in\mathbb{Z}$
$4^n+a+b=4^n+6k-1+6m-2007=(4^n-2008)+6k+6m$
Hiển nhiên $4^n-2008\vdots 2$ với mọi $n$ là tự nhiên khác 0
$4\equiv 1\pmod 3\Rightarrow 4^n\equiv 1\pmod 3$
$\Rightarrow 4^n-2008\equiv 1-2008\equiv -2007\equiv 0\pmod 3$
Vậy $4^n-2008$ chia hết cho cả 2 và 3 nên chia hết cho 6
$\Rightarrow 4^n+a+b=4^n-2008+6k+6m\vdots 6$ (đpcm)
Cho A= 111...1 ( 2008 chữ số 1)
B= 100..05 ( 2007 chữ số 0)
Chứng minh rằng \(\sqrt{AB+1}\)là số tự nhiên
Để \(\sqrt{AB+1}\in N\) thì AB+1 phải là số chính phương
Đặt 2008 = n
Ta có A = 11..1= \(\frac{10^n-1}{9}\)
B = 100..05 =10..00(2008 chữ số 0) +5 = 10n+5
\(\Rightarrow AB+1=\frac{10^n-1}{9}.\left(10^n+5\right)+1\)
\(=\frac{\left(10^n-1\right)\left(10^n+5\right)+9}{9}=\frac{10^{2n}+5.10^n-10^n-5+9}{9}\)
\(=\frac{10^{2n}+4.10^n+4}{9}=\frac{\left(10^n+2\right)^2}{9}=\left(\frac{10^n+2}{3}\right)^2\)
Mà 10n+2 có tổng các chữ số bằng 3 nên chia hết cho 3
Suy ra AB+1 là số chính phương
\(\Rightarrow\sqrt{AB+1}\)LÀ SỐ TỰ NHIÊN
ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]
chứng minh rằng số tự nhien A chia hết cho 2009, với \(A=1.2.3...2007.2008\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}+\frac{1}{2008}\right)\)
cho N là 1 số tự nhiên nào đó .Gọi b là số tạo thành bởi 2 chữ só tạo thanh của N, còn a là số tạo bởi các chữ số
chứng minh rằng Nchia hết cho 7 khi và chỉ khi 2.a+b chia hết cho 7