Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Gấu Xù
Xem chi tiết
Tiên Phụng
Xem chi tiết
Tiên Phụng
Xem chi tiết
Tiên Phụng
Xem chi tiết
ST
20 tháng 6 2018 lúc 9:41

bạn để ý trong ngoăcj có +2b^2c^2 đó bạn

Vì +2b^2c^2 - 4b^2c^2 = -2b^2c^2

ST
20 tháng 6 2018 lúc 9:31

\(B=a^4+b^4+c^4-2a^2b^2-2a^2c^2-2b^2c^2\)

\(=\left(a^4+b^4+c^4-2a^2b^2-2a^2c^2+2b^2c^2\right)-4b^2c^2\)

\(=\left(a^2-b^2-c^2\right)-\left(2bc\right)^2\)

\(=\left(a^2-b^2-c^2-2bc\right)\left(a^2-b^2-c^2+2bc\right)\)

\(=\left[a^2-\left(b+c\right)^2\right]\left[a^2-\left(b-c\right)^2\right]\)

\(=\left(a-b-c\right)\left(a+b+c\right)\left(a-b+c\right)\left(a+b-c\right)\)

Vì a,b,c là độ dài 3 cạnh tam giác nên:

b+c>a => a-(b+c) < 0 => a-b-c < 0

a+b+c > 0

a+c>b => a+c-b > 0 => a-b+c > 0

a+b>c => a+b-c > 0

Do đó (a-b-c)(a+b+c)(a-b+c)(a+b-c) < 0 hay B<0 (đpcm)

Tiên Phụng
20 tháng 6 2018 lúc 9:39

sao có - 4b^2c^2 vậy bạn

Hoàng Phúc
Xem chi tiết
Vy Ngọc
17 tháng 6 2016 lúc 10:06

undefined

Đặng Minh Triều
17 tháng 6 2016 lúc 10:08

VT=2a2b2+2a2c2+2b2c2-a4-b4-c4

=a2b2+a2c2+b2c2+a2.(b2-a2)+b2.(c2-b2)+c2.(a2-c2)

=a2b2+a2c2+b2c2+a2.(b+a)(b-a)+b2.(c+b)(c-b)+c2.(a+c)(a-c)

Ta lại có : a+b>c=>a-c>-b

                 b+c>a=>b-a>-c

                 c+a>b=>c-b>-a

(BĐT tam giác)

=>VT>a2b2+a2c2+b2c2+a2.c.(-c)+b2.a.(-a)+c2.b.(-b)

=0

=>VT>0 =>dpcm

Ngô Đức Thắng
16 tháng 4 2017 lúc 21:13

undefined

tống thị quỳnh
Xem chi tiết
vũ tiền châu
31 tháng 1 2018 lúc 21:18

Xét \(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2=\left(a^4-2a^2b^2+b^4\right)-2c^2\left(a^2-b^2\right)+c^4-4c^2b^2\)

=\(\left(a^2-b^2\right)^2-2\left(a^2-b^2\right)c^2+c^4-4c^2b^2=\left(a^2-b^2-c^2\right)^2-4c^2b^2\)

=\(\left(a^2-b^2-c^2-2bc\right)\left(a^2-b^2-c^2+2bc\right)=\left[a^2-\left(b+c\right)^2\right]\left[a^2-\left(b-c\right)^2\right]\)

=\(\left(a-b-c\right)\left(a+b+c\right)\left(a-b+c\right)\left(a+b-c\right)\)

Mà a,b,c là 3 cạnh tam giác => a-b-c<0 ;a+b+c>0;a-b+c>0;a+b-c>0 

=>\(...< 0\Rightarrow a^4+b^4+c^4< 2a^2b^2+2b^2c^2+2c^2a^2\left(ĐPCM\right)\)

Nguyễn Duy Khánh
31 tháng 1 2018 lúc 21:24

ta có\(a^4+b^4+c^4< 2a^2b^2+2c^2a^2+2b^2c^2\)

<=> \(-a^4-b^4-c^4+2a^2b^2+2a^2c^2+2b^2c^2>0\)

<=>\(4a^2c^2-\left(a^4+b^4+c^4-2a^2b^2+2a^2c^2-2b^2c^2\right)>0\)

<=> \(4a^2c^2-\left(a^2-b^2+c^2\right)^2>0\)

<=>.......

<=>(a+b+c)(a+c-b)(a+b-c)(b-a+c)>0

luôn đúng vì a,b,c là 3 cạnh của 1 tam giác 

vậy bđt trên dc cm dễ dàng

Nguyễn Ngọc Linh
Xem chi tiết
win 10 ok
1 tháng 2 2017 lúc 20:55

a on à :D 

Yoona
Xem chi tiết
Nguyen Bao Linh
24 tháng 1 2017 lúc 8:42

Giải

Ta có \(2a^2b^2+2b^2c^2+2a^2c^2-a^4-b^4-c^4\)

\(=4a^2c^2-\left(a^4+b^4+c^4-2a^2b^2+2a^2c^2-2b^2c^2\right)\)

\(=4a^2c^2-\left(a^2-b^2+c^2\right)^2\)

\(=\left(2ac+a^2-b^2+c^2\right)\left(2ac-a^2+b^2-c^2\right)\)

\(=\left[\left(a+c\right)^2-b^2\right]\left[b^2-\left(a-c\right)^2\right]\)

\(=\left(a+b+c\right)\left(a+c-b\right)\left(b+a-c\right)\left(b-a+c\right)\)

Vì a, b, c là ba cạnh của một tam giác nên:

a + b + c > 0, a + c - b > 0, b + a - c > 0, b - a + c > 0

Vậy \(2a^2b^2+2b^2c^2 +2a^2c^2-a^4-b^4-c^4>0\)

Lê Anh
Xem chi tiết

Đặt \(\hept{\begin{cases}x=2b+2c-a\\y=2c+2a-b\\z=2a+2b-c\end{cases}}\)

Vì a,b,c là độ dài ba cạnh của 1 tam giác nên \(x,y,z>0\)

Khi đó :

\(\Rightarrow\hept{\begin{cases}a=\frac{2y+2z-x}{9}\\b=\frac{2z+2x-y}{9}\\c=\frac{2x+2y-z}{9}\end{cases}}\)

Ta có bất đẳng thức mới theo ẩn x,y,z : 

\(\frac{2y+2z-x}{9x}+\frac{2z+2x-y}{9y}+\frac{2x+2y-z}{9z}\ge1\)

\(\Leftrightarrow\frac{2}{9}\left(\frac{y}{x}+\frac{z}{x}\right)+\frac{2}{9}\left(\frac{z}{y}+\frac{x}{y}\right)+\frac{2}{9}\left(\frac{x}{z}+\frac{y}{z}\right)-\frac{1}{3}\ge1\)

\(\Leftrightarrow\frac{2}{9}\left(\frac{x}{y}+\frac{y}{x}\right)+\frac{2}{9}\left(\frac{y}{z}+\frac{z}{y}\right)+\frac{2}{9}\left(\frac{z}{x}+\frac{x}{z}\right)-\frac{1}{3}\ge1\)

Ta chứng minh bất đẳng thức phụ sau : 

\(\frac{a}{b}+\frac{b}{a}\ge2\forall a,b>0\)

Thật vậy : \(\frac{a}{b}+\frac{b}{a}\ge2\)

\(\Leftrightarrow\frac{a^2}{ab}+\frac{b^2}{ab}\ge2\)

\(\Leftrightarrow\frac{a^2+b^2}{ab}-2\ge0\)

\(\Leftrightarrow\frac{a^2+b^2-2ab}{ab}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2}{ab}\ge0\)(luôn đúng \(\forall a,b>0\))

Áp dụng , ta được :

\(\frac{2}{9}.2+\frac{2}{9}.2+\frac{2}{9}.2-\frac{1}{3}\ge1\)

\(\Leftrightarrow\frac{12}{9}-\frac{1}{3}\ge1\)

\(\Leftrightarrow\frac{9}{9}\ge1\)(đúng)

Vậy bất đẳng thức được chứng minh 

Khách vãng lai đã xóa