Cho là một đa thức thỏa mãn với mọi giá trị của . Giá trị của là
Cho f(x) là một đa thức thỏa mãn 3f(x) + 2f(1-x) = 2x + 9 với mọi giá trị của x . Giá trị của f(2) là
Khi x =2 ta được: 3f(2)+2f(-1)=13
Khi x=-1 ta được: 3f(-1)+2f(2)=7
giải hệ 2 PT trên bạn tìm dc f(2) nhé
chơi tổng quát luôn
3f(1-x)+2f(x)=2(1-x)+9=-2x+7
2f(x)=3(2x+9)-2(-2x+7)=10x+15=>f(x)=5x+15/2=>f(2)=10+15/2=35/2
nhìn vào ta thấy f(x) là đa thức bậc 1 mới thỏa mãn điều kiện trên
đặt f(x)=ax+b
ta có 3(ax+b)+2(a(1-x)+b)=2x+9
3ax+3b+2(a-ax+b)=2x+9
3ax+3b+2a-2ax+2b=2x+9
ax+5b+2a=2x+9
suy ra a=2,5b+2a=9
a=2,5b+2.2=9
a=2,b=1
suy ra f(x)=2x+1
f(2)=2.2+1=5
Cho f(x) là một đa thức thỏa mãn 3f(x) + 2f(1-x) = 2x+9 với mọi giá trị của x. Giá trị của f(2) là ___ ?
Vì cái ở trên đúng với mọi x nên ta lần lược thay x = - 1 và x = 2 vào
Ta có
\(\hept{\begin{cases}3f\left(-1\right)+2f\left(2\right)=2.\left(-1\right)+9=7\\3f\left(2\right)+2f\left(-1\right)=2.2+9=13\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}6f\left(-1\right)+4f\left(2\right)=14\\6f\left(-1\right)+9f\left(2\right)=39\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}f\left(-1\right)=-1\\f\left(2\right)=5\end{cases}}\)
PS: bài này mới đúng nha. Bài kia ghi nhầm 39 thành 36
Vì cái ở trên đúng với mọi x nên ta lần lược thay x = - 1 và x = 2 vào
Ta có
\(\hept{\begin{cases}3f\left(-1\right)+2f\left(2\right)=2.\left(-1\right)+9=7\\3f\left(2\right)+2f\left(-1\right)=2.2+9=13\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}6f\left(-1\right)+4f\left(2\right)=14\\6f\left(-1\right)+9f\left(2\right)=36\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}f\left(-1\right)=-1\\f\left(2\right)=5\end{cases}}\)
Tìm các số nguyên thỏa mãn:
Cho đa thức Với giá trị nguyên nào của thì giá trị của đa thức chia hét cho giá trị của đa thức
cho f(x) là 1 đa thức thỏa mãn : 3f(x) +2f(1-x) = 2x+9 với mọi giá trị của x . tính f(2)
Có :
\(3.f\left(2\right)+2.f\left(1-2\right)=2.2+9\)
\(\Rightarrow3.f\left(2\right)+2.f\left(-1\right)=13\)
\(3.f\left(-1\right)+2.f\left(2\right)=2.\left(-1\right)+9\)
\(\Rightarrow3.f\left(-1\right)+2.f\left(2\right)=7\)
\(\Rightarrow\left[3.f\left(2\right)+2.f\left(-1\right)\right]-\left[3.f\left(-1\right)+2.f\left(2\right)\right]=13-7\)
\(\Rightarrow f\left(2\right)-f\left(-1\right)=6\)
\(\Rightarrow f\left(-1\right)=f\left(2\right)-6\)
Thay \(f\left(-1\right)=f\left(2\right)-6\)vào \(3.f\left(2\right)+2.f\left(-1\right)=13\)có:
\(3.f\left(2\right)+2.\left[f\left(2\right)-6\right]=13\)
\(3.f\left(2\right)+2.f\left(2\right)-12=13\)
\(5.f\left(2\right)=25\)
\(f\left(2\right)=\frac{25}{5}=5\)
Vậy ...
cho f(x) là 1 đa thức thỏa mãn : 3f(x) +2f(1-x) = 2x+9 với mọi giá trị của x . tính f(2)
Mình mới học lớp 6
Nên không biết nha
Chúc các bạn học giỏi
Ta có f(2)= 3f(2)+2f(-1)=2.2+9=13
f(-1)=3f(-1)+2f(2)=2.(-1)+9=7
=>f(-1)+f(2)=3f(2)+2f(-1)+3f(_1)+2f(2)=20
=:>5[f(2)+f(-1)]=20
=>f(2)+f(-1)=4
=>3f(2)+2f(_1)-3f(-1)-2f(2)=6
=>f(2)-f(-1)=6
=>f(2)+f(1)+f(2)+f(-1)=26
=>2f(2)=26
=>f(2)=13
Bài 1.
1, Cho hai đa thức
f(x) = x5 - 3x4 + 7x3 - 9x2 + 8x - 2
g(x)= x2 -2x + a
Xác định giá trị của a để tồn tại đa thức p(x) thỏa mãn f(x)= g(x) . p(x) với mọi giá trị của x.
Bài 3.
Cho tam giác nhọn ABC, gọi H là trục tâm và O là tâm đường tròn ngoại tiếp tam giác ABC.
1) Chứng minh rằng AH=AO khi và chỉ khi BAC= 60o
2) BD, CE lần lượt là hai đường phân giác trong của góc B và C (D ∈ AC, E ∈ AB). M là điểm trên cạnh BC sao cho tam giác MDE là tam giác đều.
Chứng minh rằng AH=AO
1:
\(f\left(x\right)=g\left(x\right)\cdot p\left(x\right)\)
=>\(p\left(x\right)=\dfrac{f\left(x\right)}{g\left(x\right)}\)
\(=\dfrac{x^5-3x^4+7x^3-9x^2+8x-2}{x^2-2x+a}\)
Để P(x) tồn tại với mọi x thì \(x^2-2x+a< >0\)(2) với mọi x
Giả sử \(x^2-2x+a=0\)(1)
\(\text{Δ}=\left(-2\right)^2-4\cdot1\cdot a=4-4a\)
Để phương trình (1)có nghiệm thì 4-4a>=0
=>a<=1
Do đó: Để bất phương trình (2) luôn đúng với mọi x thì a>1
Bài 3:
1:
AH=AO
=>H trùng với O
=>Tâm đường tròn ngoại tiếp ΔABC trùng với trực tâm của tam giác
=>ΔABC đều
=>\(\widehat{BAC}=60^0\)
Bài 1.
1, Cho hai đa thức
f(x) = x5 - 3x4 + 7x3 - 9x2 + 8x - 2
g(x)= x2 -2x + a
Xác định giá trị của a để tồn tại đa thức p(x) thỏa mãn f(x)= g(x) . p(x) với mọi giá trị của x.
Bài 3.
Cho tam giác nhọn ABC, gọi H là trục tâm và O là tâm đường tròn ngoại tiếp tam giác ABC.
1) Chứng minh rằng AH=AO khi và chỉ khi BAC= 60o
2) BD, CE lần lượt là hai đường phân giác trong của góc B và C (D ∈ AC, E ∈ AB). M là điểm trên cạnh BC sao cho tam giác MDE là tam giác đều.
Chứng minh rằng AH=AO
cho đa thức f(x) thỏa mãn f(x)+x.f(-x)=x+1 với mọi giá trị của x.tính f(1)
*Thay x=1=>f(1)+f(-1)=1+1=2
*Thay x=-1=>f(-1)-f(1)=-1+1=0
=>f(1)+f(-1)-(f(-1)-f(1))=2-0
=>2.f(1)=2
=>f(1)=1
f(1) + 1.f(-1) = 1+ 1 = 2 => f(1) + f(-1) = 2 (*)
f(-1) + (-1). f(1) = -1 + 1 = 0 => f(-1) - f(1) = 0 => f(-1) = f(1). Thay vào (*)
=> 2. f(1) = 2 => f(1) = 1
cho đa thức f(x)=x^2+mx+2
a) xác định m để f(x) nhận -2 làm một nghiệm
b) tìm tập hợp các nghiệm của f(x) ứng với gí trị vừa tìm được của m?
Cho đa thức (x) thỏa mãn f(x)+x*f(-x)=x+1 với mọi giá trị của x. Tính f(1)