Tính:
\(\left(\frac{-1}{-2}\right)^2;\left(\frac{-1}{-2}\right)^3;\left(\frac{-1}{-2}\right)^4;\left(\frac{-1}{-2}\right)^5\)
a)Tính: \({\left( {\frac{{ - 1}}{2}} \right)^5};{\left( {\frac{{ - 2}}{3}} \right)^4};{\left( { - 2\frac{1}{4}} \right)^3};{\left( { - 0,3} \right)^5};{\left( { - 25,7} \right)^0}\).
b)Tính: \({\left( { - \frac{1}{3}} \right)^2};{\left( { - \frac{1}{3}} \right)^3};{\left( { - \frac{1}{3}} \right)^4};{\left( { - \frac{1}{3}} \right)^5}\).
Hãy rút ra nhận xét về dấu của luỹ thừa với số mũ chẵn và luỹ thừa với số mũ lẻ của một số hữu tỉ âm.
a)
\(\begin{array}{l}{\left( {\frac{{ - 1}}{2}} \right)^5} = \frac{{{{\left( { - 1} \right)}^5}}}{{{2^5}}} = \frac{{ - 1}}{{32}};\\{\left( {\frac{{ - 2}}{3}} \right)^4} = \frac{{{{\left( { - 2} \right)}^4}}}{{{3^4}}} = \frac{{16}}{{81}};\\{\left( { - 2\frac{1}{4}} \right)^3} = {\left( {\frac{{ - 9}}{4}} \right)^3} = \frac{{{{\left( { - 9} \right)}^3}}}{{{4^3}}} = \frac{{-729}}{{64}};\\{\left( { - 0,3} \right)^5} = {\left( {\frac{{ - 3}}{{10}}} \right)^5} = \frac{{ - 243}}{{100000}};\\{\left( { - 25,7} \right)^0} = 1\end{array}\)
b)
\(\begin{array}{l}{\left( { - \frac{1}{3}} \right)^2} = \frac{1}{9};\\{\left( { - \frac{1}{3}} \right)^3} = \frac{{ - 1}}{{27}};\\{\left( { - \frac{1}{3}} \right)^4} = \frac{1}{{81}};\\{\left( { - \frac{1}{3}} \right)^5} = \frac{{ - 1}}{{243}}.\end{array}\)
Nhận xét:
+ Luỹ thừa của một số hữu tỉ âm với số mũ chẵn là một số hữu tỉ dương.
+ Luỹ thừa của một số hữu tỉ âm với số mũ lẻ là một số hữu tỉ âm.
1, Tính \(\frac{1}{2}-\left(\frac{1}{3}+\frac{2}{3}\right)+\left(\frac{1}{4}+\frac{2}{4}+\frac{3}{4}\right)-\left(\frac{1}{5}+\frac{2}{5}+\frac{3}{5}+\frac{4}{5}\right)+...+\left(\frac{1}{100}+\frac{2}{100}+\frac{3}{100}+...+\frac{99}{100}\right)\)2,Tính \(\left(1-\frac{1}{2^2}\right)x\left(1-\frac{1}{3^2}\right)x\left(1-\frac{1}{4^2}\right)x...x\left(1-\frac{1}{n^2}\right)\)
Tính :
\(\left[\frac{1}{100}-1^2\right].\left[\frac{1}{100}-\left(\frac{1}{2}\right)^2\right].\left[\frac{1}{100}-\left(\frac{1}{3}\right)^2\right]...\left[\frac{1}{100}-\left(\frac{1}{20}\right)^2\right]\)
Tính:
\(\left[\frac{1}{100}-1^2\right].\left[\frac{1}{100}-\left(\frac{1}{2}\right)^2\right].\left[\frac{1}{100}-\left(\frac{1}{3}\right)^2\right].....\left[\frac{1}{100}-\left(\frac{1}{20}\right)^2\right]\)
Xét : \(\frac{1}{100}-\frac{1}{n^2}=\frac{n^2-100}{100n^2}=\frac{\left(n-10\right)\left(n+10\right)}{100n^2}\)
Áp dụng , đặt biểu thức cần tính là A , ta có :
\(A=\left(\frac{1}{100}-\frac{1}{1^2}\right)\left(\frac{1}{100}-\frac{1}{2^2}\right)\left(\frac{1}{100}-\frac{1}{3^2}\right)...\left(\frac{1}{100}-\frac{1}{20^2}\right)\)
\(=\frac{\left(1-10\right)\left(1+10\right)}{100.1^2}.\frac{\left(2-10\right)\left(2+10\right)}{100.2^2}.\frac{\left(3-10\right)\left(3+10\right)}{100.3^2}...\frac{\left(10-10\right)\left(10+10\right)}{100.10^2}...\frac{\left(20-10\right)\left(20+10\right)}{100.20^2}\)
Nhận thấy trong A có một nhân tử (10-10) = 0 nên A = 0
làm thế thì hơi dài đấy Hoàng Lê Bảo Ngọc
ta nhận thấy trong biểu thức chứa thừa số \(\frac{1}{100}-\left(\frac{1}{10}\right)^2=\frac{1}{100}-\frac{1}{100}=0\)
=>biểu thức ấy =0
Nguyễn Thiều Công Thành Ừ , tại mình quên không để ý :)
Tính \(\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{98}+\left(\frac{1}{2}\right)^{99}+\left(\frac{1}{2}\right)^{99}\)
bn chắc đề đúng chứ?chổ (1/2)^99 đó,2 cái liền hả?
\(\frac{1}{2}\)+\(\frac{1^2}{2^2}\)+\(\frac{1^3}{2^3}\)+...+\(\frac{1^{98}}{2^{98}}\)+\(\frac{1^{99}}{2^{99}}\)
=\(\frac{1}{2}\)+\(\frac{1}{2^2}\)+\(\frac{1}{2^3}\)+...+\(\frac{1}{2^{99}}\)
=1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{2^2}\)+...+\(\frac{1}{2^{98}}\)-\(\frac{1}{2^{99}}\) Còn lại tự làm nhá kết quả cuối cùng là 299-1/299
Tính:
\(S=\left(\frac{1}{2}\right)^2+\left(\frac{1}{4}\right)^2+\left(\frac{1}{6}\right)^2+\left(\frac{1}{8}\right)^2+\left(\frac{1}{10}\right)^2+\left(\frac{1}{12}\right)^2+\left(\frac{1}{14}\right)^2\)
Tính \(B=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^4+......+\left(\frac{1}{2}\right)^{98}+\left(\frac{1}{2}\right)^{99}+\left(\frac{1}{2}\right)^{99}\) ta được B=
tính:
\(\left(\frac{1}{100}-\left(\frac{1}{1}\right)^2\right).\left(\frac{1}{100}-\left(\frac{1}{2}\right)^2\right).....\left(\frac{1}{100}-\left(\frac{1}{20}\right)^2\right)\)
\(\left[\frac{1}{100}-\left(\frac{1}{1}\right)^2\right]\cdot\left[\frac{1}{100}-\left(\frac{1}{2}\right)^2\right]\cdot...\cdot\left[\frac{1}{100}-\left(\frac{1}{10}\right)^2\right]\cdot...\cdot\left[\frac{1}{100}-\left(\frac{1}{20}\right)^2\right]\)\(=\left[\frac{1}{100}-\left(\frac{1}{1}\right)^2\right]\cdot\left[\frac{1}{100}-\left(\frac{1}{2}\right)^2\right]\cdot...\cdot\left[\frac{1}{100}-\frac{1}{100}\right]\cdot...\cdot\left[\frac{1}{100}-\left(\frac{1}{20}\right)^2\right]\)\(=\left[\frac{1}{100}-\left(\frac{1}{1}\right)^2\right]\cdot\left[\frac{1}{100}-\left(\frac{1}{2}\right)^2\right]\cdot...\cdot0\cdot...\cdot\left[\frac{1}{100}-\left(\frac{1}{20}\right)^2\right]\)=0
\(\left(\frac{1}{100}-\left(\frac{1}{1}\right)^2\right).\left(\frac{1}{100}-\left(\frac{1}{2}\right)^2\right)......\left(\frac{1}{100}-\left(\frac{1}{20}\right)^2\right)\)
\(=\left(\frac{1}{100}-\left(\frac{1}{1}\right)^2\right)....\left(\frac{1}{100}-\left(\frac{1}{10}\right)^2\right)...\left(\frac{1}{100}-\left(\frac{1}{20}\right)^2\right)\)
\(=\left(\frac{1}{100}-\left(\frac{1}{1}\right)^2\right)...\left(\frac{1}{100}-\frac{1}{100}\right)...\left(\frac{1}{100}-\left(\frac{1}{20}\right)^2\right)\)
\(=\left(\frac{1}{100}-\left(\frac{1}{1}\right)^2\right).....0......\left(\frac{1}{100}-\left(\frac{1}{20}\right)^2\right)\)
\(=0\)
Tính \(\left(\frac{1}{2^2-1}\right)\left(\frac{1}{3^2-1}\right)\left(\frac{1}{4^2-1}\right)...\left(\frac{1}{98^2-1}\right)\left(\frac{1}{99^2-1}\right)\)
Tính \(A=\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right).....\left(\frac{1}{10^2}-1\right).\left(\frac{1}{11^2}-1\right)\)
A=(1-4/22).(1-9/32).(1-16/42)...(1-121/112)
A= -3/22 . -8/32 . -15/42 . . . -120/112
A= -(1.3/2.2 . 2.4/3.3 . 3.5/4.4 ... 10.12/11.11)
A=- [(1.2.3...10/2.3.4...11) . (3.4.5...12/2.3.4...11)]
A= -12/60=-1/5