Cho tam giác ABC cân tại A .Gọi M là tia phân giác góc ngoài tại A . Chứng minh AM // BC
Cho Tam giác ABC cân tại A(AB=AC).Gọi Am là tia phân giác của góc ngoài tại đỉnh A của tam giác.
a/Chứng minh Am//BC
b/Kẻ AH vuông góc với BC.Chứng minh AH là tia phân giác của góc BAC
Chú ý:Góc ngoài tam giác bằng tổng số đo 2 góc trog tam giác không kể với nó
Vậy góc(A1)+góc(A2)=góc(B)+góc(C) .(1)
Do Am là tia phân giác ngoài tại đỉnh A của tam giác ABC nên góc A1=góc (A2).(2)
Lại có tam giác ABC cân tại A do(AB=AC) nên góc (B)=góc(C).(3)
Từ(1);(2) và (3) =>góc(A1)+góc (A1)=góc (C)+góc(C)
Suy ra góc( A1)=góc(C) mà 2 góc này nằm ở vị ttrí so le nhau
Do đó Am//BC . (dpcm)
Tui chỉ biết vẽ hình thôi
Bạn thông cảm nhá
Chúc bạn học tốt~~
Cho tam giác ABC cân tại A. Gọi tia AE là tia phân giác của góc ngoài tại đỉnh A. Chứng minh rằng AE // BC.
TH1: AE là tia pgiac góc B'AC (AB' là tia đối của tia AB)
Xét B'AC là góc ngoài tgiac ABC tại đỉnh A => góc B'AC = góc B + góc C
Mà tgiac ABC cân tại A => góc B = góc C
=> Góc C = 1/2 góc B'AC
Lại có AE là tia pgiac góc B'AC => góc EAC = 1/2 góc B'AC
=> Góc C = góc EAC
Mà hai góc này so le trong => AE song song BC.
cmtt với trường hợp AE là tia pgiac góc C'AB (AC' là tia đối của tia AC)
Vậy ta có đpcm.
Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC.
Chứng minh rằng:
a) ∆AMB = ∆AMC.
b) AM là tia phân giác của góc BAC.
c) AM ⊥ BC.
d) Vẽ At là tia phân giác của góc ngoài ở đỉnh A của Δ ABC. Chứng minh: At//BC.
Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Tia phân giác của góc B cắt AC ở D.
a) Chứng minh ∆ABD = ∆EBD.
b) Tính số đo góc BED.
c) Chứng minh BD ⊥ AE.
Giúp mình với, mình đag cần gấp :(
Hình tự vẽ nhé !
Giải
a) Xét tam giác AMB và tam giác AMC có
AB = AC ( gt )
MB = MC ( vì M là trung điểm của BC )
AM cạnh chung
Do đó tam giác AMB = tam giác AMC
b) Vì hai tam giác AMB = AMC nên góc BAM = góc CAM
Vì góc BAM = góc CAM nên AM là tia phân giác của góc BAC
c)Vì hai tam giác AMB = AMC nên góc AMB = góc AMC
mà góc AMB + góc AMC = 1800 nên góc AMB = 900
Vì góc AMB =900 nên AM vuông góc với BC
cho tam giác ABC, cân tại A. Gọi Ax là tia phân giác của góc ngoài tại đỉnh A. Chứng minh Ax // BC
Cho tam giác ABC và M là trung điểm của đoạn thẳng BC.
a) Giả sử AM vuông góc với BC. Chứng minh rằng tam giác ABC cân tại A.
b) Giả sử AM là tia phân giác của góc BAC. Chứng minh rằng tam giác ABC cân tại A.
a)
Xét 2 tam giác vuông AMC và AMB có:
AM chung
BM=CM (gt)
=>\(\Delta AMC = \Delta AMB\) (hai cạnh góc vuông)
=> AC=AB (2 cạnh tương ứng)
=> Tam giác ABC cân tại A
b)
Kẻ MH vuông góc với AB (H thuộc AB)
MG vuông góc với AC (G thuộc AC)
Xét 2 tam giác vuông AHM và AGM có:
AM chung
\(\widehat {HAM} = \widehat {GAM}\) (do AM là tia phân giác của góc BAC)
=>\(\Delta AHM = \Delta AGM\) (cạnh huyền – góc nhọn)
=> HM=GM (2 cạnh tương ứng)
Xét 2 tam giác vuông BHM và CGM có:
BM=CM (giả thiết)
MH=MG(chứng minh trên)
=>\(\Delta BHM = \Delta CGM\)(cạnh huyền – cạnh góc vuông)
=>\(\widehat {HBM} = \widehat {GCM}\)(2 góc tương ứng)
=>Tam giác ABC cân tại A.
Cho tam giác ABC cân tại A và nhọn.
a, Vẽ phía ngoài tam giác đó tam giác ABE vuông cân ở B. gọi H là trung điểm BC.Lấy I thuộc tia đối AH sao cho AI=BC. Chứng minh tam giác ABI bằng tam giác BEC. Từ đó suy ra BI vuông góc với CE
b, Phân giác góc ABC và góc BDC cắt AC, BC lần lượt tại D,M. Phân giác góc BDA cắt BC tại N. Chứng minh BD bằng một nửa MN
Cho tam giác ABC cân tại A ( Tia phân giác của góc A cắt cạnh BC tại M Từ M kẻ MH và MK .
a) Chứng minh: Tam giác AMB = tam giác AMC
b) Chứng minh: AM vuông góc BC
a: Xét ΔAMB và ΔAMC có
AB=AC
\(\widehat{BAM}=\widehat{CAM}\)
AM chung
Do đó: ΔAMB=ΔAMC
b: ta có: ΔABC cân tại A
mà AM là đường phân giác
nên AM là đường cao
Cho tam giác ABC vuông cân tại A. Tia phân giác của góc B cắt AC tại D, DN vuông góc với BC tại N.
a). Chứng minh tam giác DBA = tam giác DBN. So sánh DA và DC
b). Gọi M là giao điểm của hai đường thẳng ND và BA. Chứng minh AM = NC c). Chứng minh tam giác BMC cân
d). Gọi I là trung điểm của MC. Chứng minh ba điểm B, D, I thẳng hàng
3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :
a) BD là đường trung trực AE
b) DF=DC
c) AD<DC
4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng:
a) tam giác ABE = tam giác HBE
b) BE là đường trung trực của đoạn thẳng AH.
c) EK = EC và AE < EC
5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.
Chứng minh :
a) AM là tia phân giác góc A
b) tam giác ABD = tam giác ACD
c) tam giác BCD là tam giác cân
6. Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.
a) Chứng minh : AD=DH
b) So sánh độ dài hai cạnh AD và DC
c) Chứng minh tam giác KBC là tam giác cân
5 )
tự vẽ hình nha bạn
a)
Xét tam giác ABM và tam giác ACM có :
AM cạnh chung
AB = AC (gt)
BM = CM (gt)
suy ra : tam giác ABM = tam giác ACM ( c-c-c)
suy ra : góc BAM = góc CAM ( 2 góc tương ứng )
Hay AM là tia phân giác của góc A
b)
Xét tam giác ABD và tam giác ACD có :
AD cạnh chung
góc BAM = góc CAM ( c/m câu a)
AB = AC (gt)
suy ra tam giác ABD = tam giác ACD ( c-g-c)
suy ra : BD = CD ( 2 cạnh tương ứng)
C) hay tam giác BDC cân tại D