Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 2 2017 lúc 12:13

Erza Scarlet
Xem chi tiết
Hoàng Yến Vi
4 tháng 3 2017 lúc 21:05

= 6 cặp 

mk làm trong violympic rùi tin mk đi

Cuong Doan
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 9 2019 lúc 17:36

Chọn đáp án B.

Bằng cách sử dụng điều kiện tồn tại nghiệm của phương trình, chúng ta có: Khi a = 0 thì hàm số chỉ đạt giá trị lớn nhất (khi b < 0) hoặc chỉ đạt giá trị nhỏ nhất (khi b > 0). Còn khi 

nên tập giá trị của hàm số đã cho chỉ có đúng 6 số nguyên khi và chỉ khi 

Nguyễn Long Vượng
Xem chi tiết
Hày Cưi
Xem chi tiết
Doraemon
16 tháng 11 2018 lúc 17:33

\(2a^2+\frac{1}{a^2}+\frac{b^2}{4}=4\Leftrightarrow\left(a^2+\frac{1}{a^2}-2\right)+\left(a^2+\frac{b^2}{4}-ab\right)=4-ab-2\)

\(\Leftrightarrow\left(a-\frac{1}{a}\right)^2+\left(a-\frac{b}{2}\right)^2=2-ab\)

\(VF=2-ab=\left(a-\frac{1}{a}\right)^2+\left(b-\frac{b}{2}\right)^2\ge0\)

Hay \(ab\le2\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}a=\frac{1}{a}\\b=\frac{b}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(a;b\right)=\left(1;\frac{1}{2}\right)\\\left(a;b\right)=\left(-1;-\frac{1}{2}\right)\end{cases}}\)

Hày Cưi
16 tháng 11 2018 lúc 17:39

ủa bạn tìm giá trị nhỏ nhất của biểu thức S=ab+2019 mà 

trần minh khôi
Xem chi tiết
Trương Tuệ Nga
Xem chi tiết
Đặng Xuân Đạt
24 tháng 11 2017 lúc 20:18

fkfkbang14

Trần Đại Nghĩa
Xem chi tiết
Xyz OLM
25 tháng 3 2022 lúc 20:14

Ta có a2 + 1 \(\ge\)2a 

Khi đó \(\frac{1}{a^2+ab-a+5}=\frac{1}{a^2+1+ab-a+4}\le\frac{1}{2a+ab-a+4}=\frac{1}{ab+a+4}\)

Tương tự ta được \(\frac{1}{b^2+bc-b+5}\le\frac{1}{bc+b+4};\frac{1}{c^2+ac-c+5}\le\frac{1}{ac+c+4}\)

Cộng vế với vế => A \(\le\frac{1}{ab+a+4}+\frac{1}{bc+b+4}+\frac{1}{ca+c+4}\)

=> 4A \(\le\frac{4}{ab+a+1+3}+\frac{4}{bc+b+1+3}+\frac{4}{ca+c+1+3}\)

\(\le\frac{1}{ab+a+1}+\frac{1}{3}+\frac{1}{bc+b+1}+\frac{1}{3}+\frac{1}{ac+a+1}+\frac{1}{3}\)

\(=\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ac+a+1}+1\)

\(=\frac{1}{ab+a+1}+\frac{a}{abc+ab+a}+\frac{ab}{a^2bc+abc+ab}+1\)

\(=\frac{1}{ab+a+1}+\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+1=\frac{ab+a+1}{ab+a+1}+1=1+1=2\)

=> \(A\le\frac{1}{2}\)(Dấu "=" xảy ra <=> a = b = c = 1)

Khách vãng lai đã xóa
Trần Đại Nghĩa
26 tháng 3 2022 lúc 1:04

cho mik hỏi tí là làm sao ra được \(\frac{4}{ab+a+1+3}\le\frac{1}{ab+a+1}+\frac{1}{3}\) vậy ạ?

Khách vãng lai đã xóa
Xyz OLM
26 tháng 3 2022 lúc 6:23

Dự đoán điểm rơi a = b = c = 1 

Ta có : \(\frac{1}{ab+a+1}+\frac{1}{3}\ge\frac{\left(1+1\right)^2}{ab+a+1+3}\)(BĐT Schwarz) 

\(=\frac{4}{a+b+c+4}\) (đpcm) 

Khách vãng lai đã xóa