chứng tỏ n và 2n+1 là 2 số nguyên tố cùng nhau(n thuộc tập hợp N)
B1) Chứng tỏ 2 số 2n + 3 và 3n + 5 là 2 số nguyên tố cùng nhau với mọi n thuộc tập hợp N*
B2) Cho 5n + 6 và 8n+ 7. Tìm ƯCLN của chúng với mọi n thuộc tập N.
Gọi d là UCLN(2n+3,3n+5)
\(\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+5\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}}}\)
\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)
\(\Rightarrow1⋮d\)
=>d = 1
=>UCLN(2n+3,3n+5) = 1
=>2n+3 và 3n+5 là hai số nguyên tố cùng nhau
Gọi d là UCLN(5n+6,8n+7)
\(\Rightarrow\hept{\begin{cases}5n+6⋮d\\8n+7⋮d\end{cases}\Rightarrow\hept{\begin{cases}8\left(5n+6\right)⋮d\\5\left(8n+7\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}40n+48⋮d\\40n+35⋮d\end{cases}}}\)
\(\Rightarrow\left(40n+48\right)-\left(40n+35\right)⋮d\)
\(\Rightarrow13⋮d\)
\(\Rightarrow d\in\left\{1;13\right\}\)
Để \(\left(5n+6,8n+7\right)=1\)thì \(d\ne13\)
=> UCLN(5n+6,8n+7) = 1
B1) Gọi d là UCLN của (2n+3) và (3n+5)
Ta có: (2n+3):d và (3n+5):d => 3(2n+3):d và 2(3n+5):d
=> 2(3n+5)-3(2n+3):d <=> (6n+10-6n-9):d <=> 1:d. Do đó UCLN của 2 số đó là 1
Vậy chúng là 2 số nguyên tố cùng nhau.
B2) Cách giải tương tự.
Chứng tỏ n và 2n +1 là 2 số nguyên tố cùng nhau (n thuộc N)
goi UCLN(n,2n+1)=d
=>n chia hết cho d
2n+1 chia hết cho d
=>2n chia hết cho d
2n+1 chia hết cho d
=>(2n+1)-(2n) chia hết cho d
=>1 chia hết cho d
=>UCLN(n,2n+1)=1
=> n và 2n +1 là 2 số nguyên tố cùng nhau
vay ...
gọi UCLN(n,2n+1)=d
=>n chia hết cho d
2n+1 chia hết cho d
=>2n chia hết cho d
2n+1 chia hết cho d
=>(2n+1)-(2n) chia hết cho d
=>1 chia hết cho d
=>UCLN(n,2n+1)=1
=> n và 2n +1 là 2 số nguyên tố cùng nhau
vậy ...
Chứng tỏ rằng 2n+1 và 2n+3 (n thuộc N ) là hai số nguyên tố cùng nhau
Đặt d ϵ Ư( 2n+1; 2n+3) ĐK: d ϵ N*
=> 2n+1 chia hết cho d, 2n+3 chia hết cho d
=> (2n+3)-(2n+1) chia hết cho d
=> 2 chia hết cho d => d ϵ Ư(2) => d ϵ {1;2} (vì d ϵ N*)
Mặt khác, d là ước của 2 số lẻ 2n+1 và 2n+3 nên d=1.
=> Ư(2n+1; 2n+3)=1
Vậy 2n+1 và 2n+3 là hai số nguyên tố cùng nhau.
1) Chứng tỏ : 2n+5 và 3n+7 ( n thuộc N) là 2 số nguyên tố cùng nhau
Gọi UCLN (2n+5;3n+7) là d
Ta có : 2n+5 chia hết cho d => 3(2n+5) chia hết cho d => 6n +15 chia hết cho d
=> 3n+7 chia hết cho d => 2(3n+7) chia hết cho d => 6n+14 chia hết cho d
Ta có : (6n+15)-(6n+14)=1 chia hết cho d => d=1
Vậy 2n+5 và 3n+7 là 2 số nguyên tố cùng nhau
Cho 10 điểm phân biệt trong đó có 3 điem thẳng hàng.Hỏi có bao nhiêu đường thẳng phân biệt được tạo thành đi qua 2 điem trong số các điểm ở trên
(3x+22):8+10=12
5-|3-x|=3
Chứng tỏ :
2n + 1 và 2n + 3 là hai số nguyên tố cùng nhau với n thuộc N
Chứng tỏ rằng:
2n+1 và 2n+3(n thuộc N) là hai số nguyên tố cùng nhau
Gọi UCLN(2n+1; 2n+3) là d
Ta có:2n+1 chia hết cho d =>2n+3-2n+1 chia hết cho d =>2chia hết cho d =>d thuộc {1:2}
2n+3 chia hết cho d
Mà 2n+1 là số lẻ =>d Không thuộc {2}
Vậy d thuộc {1}=>2n+1 và 2n+3 là 2 số nguyên tố cùng nhau.
\(\text{Gọi }\left(2n+1,2n+3\right)=d\)
\(\Rightarrow\hept{\begin{cases}\left(2n+1\right)⋮d\\\left(2n+3\right)⋮d\end{cases}}\)
\(\Rightarrow\left(2n+3\right)-\left(2n+1\right)=2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
\(\text{Dễ thấy }\hept{\begin{cases}2n+1\text{không chia hết cho 2 }\\2n+3\text{không chia hết cho 2 }\end{cases}}\)
\(\Rightarrow d\ne2\Rightarrow d=1\)
\(\text{Vậy }\left(2n+1,2n+3\right)=1\)
Chứng tỏ 2n 5 và 3n 4 n thuộc N là 2 số nguyên tố cùng nhau
em ko biết là em đúng hay sai chị thông cảm nhé
Chứng tỏ 2n+5 và 3n+4(n thuộc N)là 2 số nguyên tố cùng nhau