cho x+y+z=3 tim gtln cua bieu thuc P=xy+yz+zx
Cho x,y,z la cac so duong va x+y+z =1 .Tim GTLN cua M =xy+yz+zx
Cho x,y,z la cac so khong am va x+y+z=1.Tim GTLN cua M=xy+yz+zx
\(x+z+y=1\Leftrightarrow\left(x+y+z\right)^2=1\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2zx\ge3\left(xy+yz+zx\right)=1\Rightarrow M_{max}=\frac{1}{3}.\text{Dâu "=" xay ra }\Leftrightarrow x=y=z=\frac{1}{3}\)
Đơn giản hơn:
Áp dụng bđt quen thuộc \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)
Ta có: \(M\le\frac{\left(x+y+z\right)^2}{3}=\frac{1}{3}\)
Đẳng thức xảy ra khi x = y = z =1/3
cho bieu thuc M=\(\frac{xy-3x-y+4}{xy-2x-2y+4}\)+\(\frac{yz-3y-z+4}{yz-2y-2z+4}\)+\(\frac{zx-3z-x+4}{zx-2z-2x+4}\)
chung minh GT cua bieu thuc M luon la 1 so nguyen voi x khac 2 va y khac 2
Rut gon bieu thuc sau:
\(\frac{x^3y-xy^3+y^3z-yz^3+z^3x-x^3z}{x^2y-xy^2+y^2z-yz^2+z^2x-zx^2}\)
Hên xui thôi ( cái này không có chắc lắm )
\(\frac{x^3-xy^3+y^3z-yz^3+z^3x-x^3z}{x^2y-xy^2+y^2z-yz^2+z^2x-zx^2}\)
\(=xy-xy+xy-yz+zx-x^3\)\(z\)\(-\)\(zx^2\)
\(=xy-yz-zx-x^3\)\(z\)
phần trên sai rồi cho xin lỗi ( trình bày lại )
bạn ghi lại đề nha
= xy - xy + yz - yz + zx - x^3z - zx^2
= -zx - x^3z
cho x,y,z la cac so huu ti duong thoa man x+1/yz y +1/xz z+1/xy la cac so nguyen tim gia tri lon nhat cua bieu thuc A=x+y^2+z^3
cho x,y,z la cac so nguyen duong thoa man \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=2015\)
tinh gia tri lon nhat cua bieu thuc P=\(\dfrac{xy}{x^3+y^3}+\dfrac{yz}{y^3+z^3}+\dfrac{zx}{z^{3+x^3}}\)
cho bieu thuc A= x^2/(x+Y)+y^/(y+z)+z^2/(x+z)
Với x,y,z>0 thỏa mãn căn(xy)+căn(yz)+căn(zx)=2
GTNN A
ho ba so x y z thoa man x + y +z =3. gia tri lon nhat cua bieu thuc p= xy +yz+ xz
Ta có
xy + yz + xz \(\le\)x2 + y2 + z2
<=> 3(xy + yz + xz) \(\le\)(x + y + z)2 = 9
<=> xy + yz + xz \(\le\)3
Vậy GTLN là 3 đạt được khi x = y = z = 1
Vậy theo bạn đúng thì phải như thế nào :)
cho A= x^2+y^2+z^2+xy+yz+zx .Tim GTNN cua A ,biet x+y+z=3