cmr: trung điểm các cạnh của một hình thoi là đỉnh của một hcn
CMR Trung điểm các cạnh của một hình thoi là các đỉnh của một hình chữ nhật
Giúp mình khẩn cấp
A, CMR trung điểm các cạnh của 1 hình thang cân là các đỉnh của 1 hình thoi.
b,CMR trung điểm các cạnh hthoi là các đỉnh của hình chữ nhật
Giúp mình!!!!!!!!
Chứng minh rằng các trung điểm của bốn cạnh của một hình chữ nhật là các đỉnh của một hình thoi
Tham khảo: https://loigiaihay.com/bai-75-trang-106-sgk-toan-8-tap-1-c43a3348.html
* Xét tam giác ABC có E và F lần lượt là trung điểm của AB và BC
=> EF là đường trung bình của tam giác ABC
* Tương tự tam giác ADC có HG là đường trung bình nên:
Từ (1) và (2) suy ra: EF // HG và EF = HG
=> tứ giác EFGH là hình bình hành.
Lại có: EF // AC và BD ⊥ AC nên BD ⊥ EF
EH // BD và EF ⊥ BD nên EF ⊥ EH
Nên
Hình bình hành EFGH có Ê = 90º nên là hình chữ nhật
Chứng minh rằng các trung điểm của bốn cạnh của một hình chữ nhật là các đỉnh của một hình thoi.
Tham kho dưới đây nhé
https://loigiaihay.com/bai-75-trang-106-sgk-toan-8-tap-1-c43a3348.html
Xét hcn ABCD có M,N,P,Q là trung điểm AB,BC,CD,DA
Ta thấy MN,PQ lần lượt là đường trung bình tam giác ABC và ACD
Suy ra MN//AC;\(MN=\dfrac{1}{2}AC\) và PQ//AC;\(PQ=\dfrac{1}{2}AC\)
Do đó MN//PQ và MN=PQ
Hay MNPQ là hbh
Lại có NP là đtb tg BCD nên \(NP=\dfrac{1}{2}BD\)
Mà ABCD là hcn nên \(NP=\dfrac{1}{2}BD=\dfrac{1}{2}AC=MN\)
Vậy MNPQ là hthoi (đpcm)
Chứng minh rằng các trung điểm của bốn cạnh của một hình chữ nhật là các đỉnh của một hình thoi.
* Xét tam giác ABD có E và H lần lượt là trung điểm của AB và AD
=> EH là đường trung bình của tam giác
* Chứng minh tương tự, ta có:
* Lại có, ABCD là hình chữ nhật nên AC = BD (3)
Từ (1), (2), (3) suy ra: EF = FG = GH= HE
=> tứ giác EFGH là hình thoi.
Chứng minh rằng các trung điểm của bốn cạnh của một hình thoi là các đỉnh của một hình chữ nhật.
* Xét tam giác ABC có E và F lần lượt là trung điểm của AB và BC
=> EF là đường trung bình của tam giác ABC
* Tương tự tam giác ADC có HG là đường trung bình nên:
Từ (1) và (2) suy ra: EF // HG và EF = HG
=> tứ giác EFGH là hình bình hành.
Lại có: EF // AC và BD ⊥ AC nên BD ⊥ EF
EH // BD và EF ⊥ BD nên EF ⊥ EH
Nên
Hình bình hành EFGH có Ê = 90º nên là hình chữ nhật
Chứng minh rằng trung điểm các cạnh của một hình thoi là đỉnh của một hình chữ nhật.
Giả sử hình thoi ABCD. Gọi E, F, G, H lần lượt là trung điểm của các cạnh AB, BC, CD, DA.
* Trong ∆ ABC, ta có:
E là trung điểm của AB
F là trung điểm của BC
Nên EF là đường trung bình của ∆ ABC.
⇒ EF // AC và EF = 1/2 AC (t/chất đường trung bình của tam giác) (1)
* Trong ∆ ADC, ta có: H là trung điểm của AD
G là trung điểm của CD
Nên HG là đường trung bình của tam giác ADC
⇒ HG // AC và HG = 1/2 AC (t/chất đường trung bình của tam giác) (2)
Từ (1) và (2) suy ra: EF // HG và EF = HG
Suy ra tứ giác EFGH là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau)
Mặt khác: AC ⊥ BD (tính chất hình thoi)
EF // AC (chứng minh trên)
CMR trung điểm các cạnh của 1 hình thang cân là các đỉnh của 1 hình thoi.
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
Chứng minh rằng các trung điểm của bốn cạnh của một hình thoi là các đỉnh của một hình chữ nhật.