Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Nhật Lệ
Xem chi tiết
Nguyễn Ngọc Ánh
Xem chi tiết
Nguyễn Thị Quỳnh Anh
Xem chi tiết
Pham Van Hung
15 tháng 9 2018 lúc 20:39

     \(10a^2-b^2+ab=0\)

\(\Rightarrow10a^2+6ab-5ab-3b^2=0\)

\(\Rightarrow2a\left(5a+3b\right)-b\left(5a+3b\right)=0\)

\(\Rightarrow\left(5a+3b\right)\left(2a-b\right)=0\)

Mà \(b>a>0\Rightarrow5a+3b>0\)

Do đó: \(2a-b=0\Rightarrow2a=b\)

Ta có: \(B=\frac{2a-b}{3a-b}+\frac{5b-a}{3a+b}\)

             \(=0+\frac{10a-a}{3a+2a}\) (vì b = 2a)

              \(=0+\frac{9}{5}=\frac{9}{5}\)

Vậy \(A=\frac{9}{5}\)

Chúc bạn học tốt.

         

Đặng Thúy Trâm
Xem chi tiết
soyeon_Tiểubàng giải
15 tháng 9 2016 lúc 10:49

Vì \(\begin{cases}5a+3b⋮1995\\13a+8b⋮1995\end{cases}\) => \(\begin{cases}8.\left(5a+3b\right)⋮1995\\3.\left(13a+8b\right)⋮1995\end{cases}\)=> \(\begin{cases}40a+24b⋮1995\\39a+24b⋮1995\end{cases}\)

=> \(\left(40a+24b\right)-\left(39a+24b\right)⋮1995\)

=> \(40a+24b-39a-24b⋮1995\)

=> \(b⋮1995\left(1\right)\) 

=> \(8b⋮1995\)

Mặt khác \(13a+8b⋮1995\)

=> \(13a⋮1995\)

Mà (13;1995)=1 => \(a⋮1995\left(2\right)\)

Từ (1) và (2) => \(a,b⋮1995\left(đpcm\right)\)

Yêu nè
Xem chi tiết
Phạm Thị Thùy Linh
15 tháng 3 2020 lúc 12:51

\(\hept{\begin{cases}2a+b+2c=6\\3a+4b-3c=4\end{cases}}\)\(\Rightarrow a+3b-5c=-2\)

\(\Rightarrow3b=-2+5c-a\)\(\Rightarrow3b+2a-4c=-2+5c-a+2a-4c\)

\(\Rightarrow P=-2+a+c\)

Lại có : \(2a+b+2c=6\Rightarrow2\left(a+c\right)\le6\)

\(\Rightarrow a+c\le3\)

\(\Rightarrow P\le-2+3=1\Rightarrow P\le1\)

Dấu " = " sảy ra \(\Leftrightarrow\hept{\begin{cases}b=0\\3a-3c=4\\2a+2c=6\end{cases}}\)\(\Rightarrow\hept{\begin{cases}b=0\\3a-3c=4\\3a+3c=9\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a=\frac{13}{6}\\b=0\\c=\frac{5}{6}\end{cases}}\)

Chị chỉ tìm được Max thui 

Khách vãng lai đã xóa
Nguyễn Linh Chi
19 tháng 3 2020 lúc 20:47

\(\hept{\begin{cases}2a+b+2c=6\\3a+4b-3c=4\end{cases}}\)

<=> \(\hept{\begin{cases}b+2c=6-2a\\4b-3c=4-3a\end{cases}}\)

<=> \(\hept{\begin{cases}c=\frac{20}{11}-\frac{5a}{11}\\b=\frac{26}{11}-\frac{12}{11}a\end{cases}}\)

P = \(2a+3\left(\frac{26}{11}-\frac{12}{11}a\right)-4\left(\frac{20}{11}-\frac{5a}{11}\right)\)

\(=-\frac{2}{11}+\frac{6}{11}a\ge-\frac{2}{11}\)

Dấu "=" xảy ra <=> a = 0 => c =20/11 và b = 26/11

Vậy min P = -2/11 tại a = 0; b = 26/11 và c= 20/11

Khách vãng lai đã xóa
Nguyễn Linh Chi
19 tháng 3 2020 lúc 22:46

Cách tìm max khác:

Ta có: \(\hept{\begin{cases}2a+b+2c=6\\3a+4b-3c=4\end{cases}}\)

<=> \(\hept{\begin{cases}2a+2c=6-b\\3a-3c=4-4b\end{cases}}\) <=> \(\hept{\begin{cases}a+c=3-\frac{b}{2}\\a-c=\frac{4}{3}-\frac{4b}{3}\end{cases}}\)

<=> \(\hept{\begin{cases}a=\frac{13}{6}-\frac{11b}{12}\\c=\frac{5}{6}+\frac{5}{12}b\end{cases}}\)

khi đó P = \(2\left(\frac{13}{6}-\frac{11b}{12}\right)+3b-4\left(\frac{5}{6}+\frac{5}{12}b\right)=1-\frac{1}{2}b\le1\)

Dấu bằng xảy ra khi và chỉ khi b = 0 khi đó a = 13/6 và c = 5/6( thỏa mãn)

Vậy maxP = 1 tại a = 13/6 ;  b = 0 ; c = 5/6.

Khách vãng lai đã xóa
Hắc Thiên
Xem chi tiết
Cao Tường Vi
Xem chi tiết
Nguyenx Văn Tâm
Xem chi tiết
Lê Nguyên Hạo
2 tháng 11 2016 lúc 18:04

\(a-b⋮7\Rightarrow a⋮6,b⋮7\)

\(\Rightarrow4a⋮7;3b⋮7\)

\(\Rightarrow4a+3b⋮7\) (đpcm)

forever young
Xem chi tiết