1, cho phương trình: x3-3(m-1)x2+8mx-4=0
a, Tìm m để phương trình có 3 nghiệm phân biệt
cho pt: \(x^3-x^2+2mx-2m=0\left(1\right)\)
a, Tìm m để phương trình có ba nghiệm phân biệt x1,x2,x3 tm: x1+x2+x3=10
b,Tìm m để phương trình có ba nghiệm phân biệt đều lớn hơn hoặc bằng 1.
\(x^3-x^2+2mx-2m=0\)
\(\Leftrightarrow x^2\left(x-1\right)+2m\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+2m\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2=-2m\end{matrix}\right.\)
Để pt có 3 nghiệm \(\Rightarrow-2m>0\Rightarrow m< 0\)
a. Do vai trò 3 nghiệm như nhau, ko mất tính tổng quát giả sử \(x_1=1\) và \(x_2;x_3\) là nghiệm của \(x^2+2m=0\)
Để pt có 3 nghiệm pb \(\Rightarrow\left\{{}\begin{matrix}-2m>0\\-2m\ne1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< 0\\m\ne-\dfrac{1}{2}\end{matrix}\right.\)
Khi đó: \(x_2+x_3=0\Rightarrow x_1+x_2+x_3=1\ne10\) với mọi m
\(\Rightarrow\) Không tồn tại m thỏa mãn yêu cầu
b.
Giả sử pt có 3 nghiệm, khi đó \(\left[{}\begin{matrix}x_2=-\sqrt{-2m}< 0< 1\\x_3=\sqrt{-2m}\end{matrix}\right.\)
\(\Rightarrow\) Luôn có 1 nghiệm của pt âm \(\Rightarrow\) không tồn tại m thỏa mãn
Em coi lại đề bài
Cho phương trình : x2 - (m + 4)x + 4m = 0
a/ Tìm m để phương trình có một nghiệm là 2 . Tìm nghiệm còn lại của phương trình .
b/ Tìm m để phương trình đã cho có 2 nghiệm phân biệt x1, x2 thỏa mãn :
x12 + (m + 4)x2 = 16
\(x^2-\left(m+4\right)x+4m=0\) (1)
a)Thay x=2 vào pt (1) ta được: \(4-\left(m+4\right).2+4m=0\) \(\Leftrightarrow m=2\)
Thay m=2 vào pt (1) ta được: \(x^2-6x+8=0\)\(\Leftrightarrow x^2-4x-2x+8=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-2\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
Vậy nghiệm còn lại là 4
b)Để pt có hai nghiệm pb \(\Leftrightarrow\Delta>0\Leftrightarrow m^2-8m+16>0\)\(\Leftrightarrow\left(m-4\right)^2>0\)\(\Leftrightarrow m\ne4\)
Do x1 là một nghiệm của pt \(\Rightarrow x_1^2-\left(m+4\right)x_1+4m=0\)
\(\Rightarrow x_1^2=\left(m+4\right)x_1-4m=0\)
Theo viet có: \(x_1+x_2=m+4\)
\(x_1^2+\left(m+4\right)x_2=16\)
\(\Leftrightarrow\left(m+4\right)x_1-4m+\left(m+4\right)x_2=16\)
\(\Leftrightarrow\left(m+4\right)\left(x_1+x_2\right)-4m-16=0\)
\(\Leftrightarrow\left(m+4\right)^2-4m-16=0\)
\(\Leftrightarrow m^2+4m=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=-4\end{matrix}\right.\)(Thỏa)
Vậy...
Cho phương trình: x2 - mx + m -3 = 0
a) Giải phương trình với m = 1.
b) Chứng minh: Phương trình luôn có 2 nghiệm phân biệt với mọi m.
c) Tìm 1 hệ thức liên hệ giữa 2 nghiệm của phương trình mà không phụ thuộc vào m.
d) Tìm m để x1/x2 + x2/x1 = -5/2
CẦN GẤP LẸ MỌI NGƯỜI ƠI!!
1) Giải hệ phương trình:
\(\dfrac{1}{x-2}+\dfrac{1}{y-1}=2\)
\(\dfrac{2}{x-2}-\dfrac{3}{y-1}=1\)
2) Cho phương trình: \(^{x^2}\)– 2(m + 1)x + 4m = 0
a,Tìm m để phương trình có hai nghiệm phân biệt \(x_1,x_2\)
b. Tìm m để hai nghiệm x1, x2 thỏa mãn \(\left(x_1-x_2\right)^2-x_1.x_2=3\)
Giaỉ chi tiết giúp mình 1 chút ạ. Mình cảm ơn
1, ĐKXĐ:\(x\ne2,y\ne1\)
Đặt `1/(x-2)` = a, `1/(y-1)` = b
\(Hệ.\Leftrightarrow\left\{{}\begin{matrix}a+b=2\\2a-3b=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{7}{5}\\b=\dfrac{3}{5}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x-2}=\dfrac{7}{5}\\\dfrac{1}{y-1}=\dfrac{3}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7x-14=5\\3y-3=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{19}{7}\\y=\dfrac{8}{3}\end{matrix}\right.\)\(2,\Delta'=\left[-\left(m+1\right)\right]^2-4m=m^2+2m+1-4m=m^2-2m+1=\left(m-1\right)^2\ge0\)
Để pt có 2 nghiệm phân biệt thì \(\Delta'>0\Leftrightarrow\left(m-1\right)^2>0\Leftrightarrow m-1\ne0\Leftrightarrow m\ne1\)
b, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=4m\end{matrix}\right.\)
\(\left(x_1-x_2\right)^2-x_1x_2=3\\ \Leftrightarrow\left(x_1+x_2\right)^2-5x_1x_2=3\\ \Leftrightarrow\left(2m+2\right)^2-5.4m-3=0\\ \Leftrightarrow4m^2+8m+4-20m-3=0\\ \Leftrightarrow4m^2-12m+1=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3+2\sqrt{2}}{2}\\x=\dfrac{3-2\sqrt{2}}{2}\end{matrix}\right.\)
Cho phương trình: 3x²+7x+m=0
a) tìm m để hệ phương trình có hai nghiệm phân biệt x1;x2
b) với điều kiện ở câu b, tìm m để: -x1²-x2²=3
Cho phương trình x 3 - 3 x 2 + m x - 2 m + 2 = 0 (m là tham số). Có bao nhiêu giá trị nguyên dương của m để phương trình có 3 nghiệm phân biệt x1,x2,x3 thỏa mãn x1<1<x2<x3?
A.0
B.3
C.5
D.Vô số
Đáp án A
Ghi nhớ: Nếu hàm số
liên tục trên đoạn và thì phương trình
có ít nhất một nghiệm nằm trong khoảng .
Bài 1 cho pt x^2-2(m+1)x+4m+m^2=0 .Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 sao cho biểu thức A =|x1-x2| đạt giá trị nhỏ nhất
bài 2 cho pt x^2+mx+2m-4=0.Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn |x1|+|x2|=3
bài 3 cho pt x^2-3x-m^2+1=0.tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn |x1|+2|x2|=3
cho phương trình:x2-2m.(m-2).x+2m-5=0
a)chứng minh phương trình luôn có 2 nghiệm phân biệt ∀
b) tìm m để có nghiệm phương trình nhỏ hơn 1
c)tìm m để phương trình có 2 nghiệmx1;x2 thỏa mãn x1 -3x2=m
cho phương trình:x2-2m.(m-2).x+2m-5=0
a)chứng minh phương trình luôn có 2 nghiệm phân biệt ∀
b) tìm m để có nghiệm phương trình nhỏ hơn 1
c)tìm m để phương trình có 2 nghiệmx1;x2 thỏa mãn x1 -3x2=m