Tìm số đo mỗi góc của tam giác ABC , biết các góc A,B,C tỉ lệ với 3,4,5.
Tìm số đo mỗi góc của tam giác ABC , biết các góc A,B,C tỉ lệ với 3,4,5.
gọi số đo 3 góc đó là x;y;z
theo đề ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) và x+y+z=180 (tổng 3 góc của 1 tam giác là 1800)
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{3+4+5}=\frac{180}{12}=15\)
suy ra: \(\frac{x}{3}=15\Rightarrow x=45;\frac{y}{4}=15\Rightarrow y=60;\frac{z}{5}=15\Rightarrow z=75\)
Vậy số đo 3 góc đó là : 45o;60o;75o
a) Tìm các góc của tam giác ABC biết số đo của các góc A,B,C tỉ lệ với 3,4,5
b) Tìm số tự nhiên có 3 chữ số biết răng số đó là bội của 18 và các chữ số của nó tỉ lệ theo 1:2:3.
Ai làm đúng trước mình sẽ tích!
Các bạn ơi giải bài toán này giúp mình với nhé !
Bài 1 :
a) Cho tam giác ABC có số đo ba góc A , B , C tỉ lệ thận với 3 , 11 , 16 . Tìm số đo các góc của tam giác ABC .
b) Cho tam giác ABC có số đo ba góc A , B , C tỉ lệ nghịch với 15 , 16 , 48 . Tìm số đo các góc của tam giác ABC .
c) Cho tam giác ABC có số đo ba góc A , B , C tỉ lệ thuân với 5 , 7 , 8 . Tìm số đo các góc của tam giác ABC.
d) Cho tam giác ABC cósố đo ba góc A , B , C tỉ lệ nghịch với 4 , 4, 3 . Tìm số đo các gọc của tam giác ABC .
mình rất cần bài này để chuẩn bị đi học !
bài này lóp 7 hoc rù nhung quyen lop 7 nhình học giỏi lám đó
1.Cho tam giác ABC có số đo góc A,góc B,góc C tỉ lệ nghịch vs 3;4;6.Tính số đo các góc của tam giác ABC.
2.Cho tam giác ABC có số đo góc A,góc B,góc C tỉ lệ thuận vs 3;4;5.Tính số đo các góc của tam giác ABC.
Cho tam giác ABC có số đo các góc A, B, C lần lượt tỉ lệ với 2; 3; 4.
a) Lập tỉ lệ thức biểu diễn mối liên hệ giữa số đo ba góc của tam giác ABC.
b) Tính số đo mỗi góc của tam giác.
`a,` Gọi số đo `3` góc của Tam giác `ABC` lần lượt là `x,y,z (x,y,z \ne 0)`
Tỉ lệ thức biểu diễn mối quan hệ giữa số đo `3` góc trong Tam giác `ABC` là `x/2=y/3=z/4`
`b,` Tổng số đo `3` góc trong `1` tam giác là `180^0`
`-> x+y+z=180`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/2=y/3=z/4=(x+y+z)/(2+3+4)=180/9=20`
`-> x/2=y/3=z/4=20`
`->x=20*2=40, y=20*3=60, z=20*4=80`
Vậy, số đo của `3` góc trong Tam giác `ABC` lần lượt là `40^0, 60^0, 80^0.`
a:
Đặt \(a=\widehat{A};b=\widehat{B};c=\widehat{C}\)
a/2=b/3=c/4
b: a/2=b/3=c/4=(a+b+c)/(2+3+4)=180/9=20
=>a=40; b=60; c=80
Các góc \(\widehat{A}\),\(\widehat{B}\),\(\widehat{C}\)của tam giác tỉ lệ với 3,4,5 . Tính số đo các góc của tam giác ABC .
Ta có \(\widehat{A}+\widehat{B}+\widehat{C}=180\)
Lại có: \(\frac{\widehat{A}}{3}=\frac{\widehat{B}}{4}=\frac{\widehat{C}}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{\widehat{A}}{3}=\frac{\widehat{B}}{4}=\frac{\widehat{C}}{5}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{3+4+5}=\frac{180}{12}=15\)
Suy ra \(\widehat{A}=3\cdot15=45\)độ, \(\widehat{B}=4\cdot15=60\)độ, \(\widehat{C}=15\cdot5=75\)độ
Chúc bạn học tốt!
Tk giúp mk nha
Ta có : \(\widehat{A}+\widehat{B}+\widehat{C}\)=180o ( tổng 3 góc của tam giác )
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{\widehat{A}}{3}=\frac{\widehat{B}}{4}=\frac{\widehat{C}}{5}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{3+4+5}=\frac{180^o}{12}=15^o\)
\(\hept{\begin{cases}\frac{\widehat{A}}{3}=15^o\Rightarrow\widehat{A}=15^o.3=45^o\\\frac{\widehat{B}}{4}=15^o\Rightarrow\widehat{B}=15^o.4=60^o\\\frac{\widehat{C}}{5}=15^o\Rightarrow\widehat{C}=15^o.5=75^o\end{cases}}\)
Vậy góc A=45o ; góc B=60o ; góc C=75o
Gọi số đo các góc A,B,C lần lượt là a,b,c \(\left(a,b,c\inℕ^∗\right)\)
Theo đề bài ta có: \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)và a+b+c = \(180^0\)
Áp dung tính chất day tỉ số bằng nhau ta có
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{180^0}{12}=15^0\)
\(\Rightarrow\frac{a}{3}=15^0\Rightarrow a=45^0\)
\(\frac{b}{4}=15^0\Rightarrow b=60^0\)
\(\frac{c}{5}=15^0\Rightarrow c=75^0\)
Vậy................................................
Cho tam giác ABC có các góc ngoài đỉnh A,B,C tỉ lệ với các số 3,4,5. Hãy tính các góc trong tam giác ABC
Gọi số đo các góc A,B,C lần lượt là a,b,c
Theo đề, ta co: \(\dfrac{180-a}{3}=\dfrac{180-b}{4}=\dfrac{180-c}{5}\)
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{180-a}{3}=\dfrac{180-b}{4}=\dfrac{180-c}{5}=\dfrac{180+180+180-a-b-c}{3+4+5}=\dfrac{540-180}{12}=\dfrac{360}{12}=30\)
=>180-a=90; 180-b=120; 180-c=150
=>a=90; b=60; c=30
Gọi số đo các góc trong tam giác `ABC` lần lượt là `x,y,z (x,y,z \ne 0)`
Gọi số đo các góc ngoài tam giác `ABC` lần lượt là `a, b, c (a,b,c \ne 0)`
Các góc ngoài đỉnh `A, B, C` lần lượt tỉ lệ với các số `3:4:5`
Nghĩa là: \(\dfrac{180-a}{3}=\dfrac{180-b}{4}=\dfrac{180-c}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{180-a}{3}=\dfrac{180-b}{4}=\dfrac{180-c}{5}=\dfrac{180-a+180-b+180-c}{3+4+5}\)
\(=\dfrac{570-180}{12}=\dfrac{360}{12}=30\)
`->`\(\dfrac{180-x}{3}=\dfrac{180-y}{4}=\dfrac{180-z}{5}=30\)
`-> a=30*3=90, b=30*4=120, c=30*5=150`
`->`\(\left\{{}\begin{matrix}x=180^0-90^0=90^0\\y=180^0-120^0=60^0\\z=180^0-150^0=30^0\end{matrix}\right.\)
Vậy, các góc trong tam giác `ABC` lần lượt là `90^0, 60^0, 30^0.`
tam giác ABC có số đo các góc A,B,C tỉ lệ với 3,5,7 .Tính số đo các góc của tam giác ABC.(Biết rằng tổng số đo góc tong 1 tam giác bằng 1 tam giác
Tổng số đo các góc của hình tam giác luôn bằng 360 độ
Số đo của góc A là:360:(3+5+7)x3=72 độ
Số đo của góc B là:72:3x5=120 độ
Số đo của góc C là:360-120-72=168 độ
Góc A = 72o
Góc B = 120o
Góc C = 168o
tam giác ABC có số đo các góc A,B,C tỉ lệ với 3,5,7 .Tính số đo các góc của tam giác ABC biết rằng tổng số đo ba trong 1 tam giác = 180o
Tam giác ABC có số đo các góc A, B, C tỉ lệ với 3; 5; 7. Tính số đo các góc của tam giác ABC, biết rằng tổng số đo ba góc trong một tam giác bằng 1800 .
Giúp mình với
\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{7}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{3+5+7}=\dfrac{180^0}{15}=12^0\\ \Rightarrow\left\{{}\begin{matrix}\widehat{A}=36^0\\\widehat{B}=60^0\\\widehat{C}=84^0\end{matrix}\right.\)