Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thu Huyen Vu Thi
Xem chi tiết
Hoàng Đức Hải
5 tháng 12 2016 lúc 21:13

30,25

need help
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 5 2023 lúc 11:02

A=3(x^2+2/3x-1)

=3(x^2+2*x*1/3+1/9-10/9)

=3(x+1/3)^2-10/3>=-10/3

Dấu = xảy ra khi x=-1/3

\(B=1+\dfrac{15}{x^2+x+5}=1+\dfrac{15}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}}< =1+15:\dfrac{19}{4}=1+\dfrac{60}{19}=\dfrac{79}{19}\)

Dấu = xảy ra khi x=-1/2

Cíu iem
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 11 2021 lúc 19:58

a: \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}B=\dfrac{-3}{3-1}=\dfrac{-3}{2}\\B=\dfrac{1}{-1-1}=-\dfrac{1}{2}\end{matrix}\right.\)

Văn Phi Hiếu
Xem chi tiết
Huy Nguyễn Đức
2 tháng 5 2017 lúc 19:33

3A=3(x^2-x+1)/(x^2+x+1)

3A-1=(3x^2-3x+3)/(x^2+x+1)-1

3A-1=(3x^2-3x+3-x^2-x-1)/(x^2+x+1)

3A-1=(2x^2-4x+2)/(x^2+x+1)

3A-1=2(x-1)^2/(x^2+x+1)>=0

=>3A>=1

A>=1/3

=>GTNN của A là 1/3 khi x-1=0 hay x=1 

A-3=(x^2-x+1)/(x^2+x+1)-3

A-3=(x^2-x+1-3x^2-3x-3)/(x^2+x+1)

A-3=(-2x^2-4x-2)/(x^2+x+1)

A-3=-2(x+1)^2/(x^2+x+1)<=0

=>A<=3

=>GTLN của A=3 khi x=-1 

Văn Phi Hiếu
9 tháng 5 2017 lúc 22:52

con H=(x^2+x+1)/(x^2-x+1)

Quynh Anh Quach
Xem chi tiết
dảke
Xem chi tiết
Phạm Minh Quang
Xem chi tiết
Huyền Lưu
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 7 2023 lúc 23:27

1:

a: =x^2-7x+49/4-5/4

=(x-7/2)^2-5/4>=-5/4

Dấu = xảy ra khi x=7/2

b: =x^2+x+1/4-13/4

=(x+1/2)^2-13/4>=-13/4

Dấu = xảy ra khi x=-1/2

e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4

Dấu = xảy ra khi x=1/2

f: x^2-4x+7

=x^2-4x+4+3

=(x-2)^2+3>=3

Dấu = xảy ra khi x=2

2:

a: A=2x^2+4x+9

=2x^2+4x+2+7

=2(x^2+2x+1)+7

=2(x+1)^2+7>=7

Dấu = xảy ra khi x=-1

b: x^2+2x+4

=x^2+2x+1+3

=(x+1)^2+3>=3

Dấu = xảy ra khi x=-1

 

Thanh Nguyenthi
Xem chi tiết
Ngọc Hưng
4 tháng 11 2019 lúc 21:24

a. \(4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

Vậy GTLN của A = 7 khi x = 2

b. \(x-x^2=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Vậy GTLN của B = \(\frac{1}{4}\) khi x = \(\frac{1}{2}\)

Khách vãng lai đã xóa