Tìm \(n\in N\)sao cho :
a) \(15-2n⋮n+1\)
b) \(\left(6n+9\right)⋮\left(4n-1\right)\)
Tìm \(n\in N\)sao cho :
a) 15 - 4n chia hết cho n
b) ( 6n - 9 ) chia hết cho n \(\left(n\ge2\right)\)
c) ( n + 13 ) chia hết cho ( n - 5 )
d) ( 15 - 2n ) chia hết cho n + 1 \(\left(n\le7\right)\)
tìm n\(\in\)N,biết:
\(\left(6n+9\right)⋮\left(4n-1\right)\left(n\ge1\right)\)
6n+9\(⋮\)4n-1 ->4.(6n+9)\(⋮\)4n-1
->24n+36\(⋮\)4n-1
->24n-6+42\(⋮\)4n-1
->6(4n-1)+42\(⋮\)4n-1
->4n-1 thuoc uoc cua 42 ma n\(\supseteq\)1 nen 4n-1\(\supseteq\)3
4n-1 | 3 | 6 | 7 | 21 | 42 |
n | 1 | 7/4 | 2 | 11/2 | 43/4 |
ma n laf so tu nhien nen n=1,2
Tìm các giới hạn sau:
a) \(lim\left(\sqrt{4n+1}-2\sqrt{n}\right)\)
b) \(lim\left(\sqrt{n^2+2n}-\sqrt{n^2-2n}-n\right)\)
c) \(lim\left(\sqrt{9^n-3^n}-4^n\right)\)
d) \(lim\left(3n^3+2n^2+n\right)\)
\(a=\lim\dfrac{1}{\sqrt{4n+1}+2\sqrt{n}}=\dfrac{1}{\infty}=0\)
\(b=\lim n\left(\sqrt{1+\dfrac{2}{n}}-\sqrt{1-\dfrac{2}{n}}-1\right)=+\infty.\left(-1\right)=-\infty\)
\(c=\lim4^n\left(\sqrt{\left(\dfrac{9}{16}\right)^n-\left(\dfrac{3}{16}\right)^n}-1\right)=+\infty.\left(-1\right)=-\infty\)
\(d=\lim n^3\left(3+\dfrac{2}{n}+\dfrac{1}{n^2}\right)=+\infty.3=+\infty\)
Tìm \(n\in N\), sao cho
\(a,\left(4n^2-3n-1\right)⋮\left(4n-1\right)\)
\(b,\left(4n^2-3n-1\right)⋮\left(n-1\right)\)
Giúp Em vs ạ =)))))
a)4n2-3n-1 chia hết cho 4n-1
<=>4n2-n-2n-1 chia hết cho 4n-1
<=>n(4n-1)-(2n+1) chia hết cho 4n-1
<=>2n+1 chia hết cho 4n-1
<=>2(2n+1) chia hết cho 4n-1
<=>4n-1+3 chia hết cho 4n-1
<=>3 chia hết cho 4n-1
=>4n-1 thuộc Ư(3)
=>Ư(3)={-1;1;-3;3}
Ta có bảng sau:
4n-1 | -1 | 1 | -3 | 3 |
n | 0 | 1/2 | -1/2 | 1 |
KL | tm | loại | loại | tm |
Vậy n thuộc {0;1}
b)4n2-3n-1 chia hết cho n-1
<=>4n2-4n+n-1 chia hết cho n-1
<=>4n(n-1)+n-1 chia hết cho n-1
<=>(4n+1)(n-1) chia hết cho n-1
<=>n thuộc N với mọi gtrị
P/s: "chia hết cho" thì viết kí hiệu vô
Is that T :))
Bài 1 : Tìm \(n\in N\)
a) \(\frac{4n-1}{3n+2}\in N\) b) \(\frac{5n-7}{2n+1}\in N\)
Bài 2 : Tìm \(n\in N\)
a) \(\left(n+2\right)\cdot\left(2n+5\right)=21\) b) \(\left(2n-3\right)\cdot\left(n-5\right)=22\)
Bài 3 : Tìm \(x.y\in N\)
a) \(\left(2n+1\right)\cdot\left(3y-5\right)=12\) b) \(\left(3x-1\right)\cdot\left(4y+3\right)=14\)
Cách bạn giải ra giúp mình nha !
Tìm \(n\in N\), sao cho :
\(a,\left(2n^2-3n+1\right)⋮\left(n-1\right)\)
\(b,\left(2n^2-3n+1\right)⋮\left(2n-1\right)\)
a.\(2n^2-3n+1=2n\times\left(n-1\right)-\left(n-1\right)=\left(2n-1\right)\times\left(n-1\right)\Rightarrow2n-1⋮n-1\)
\(\Rightarrow2\left(n-1\right)+1⋮n-1\Rightarrow1⋮n-1\Rightarrow n-1\inƯ\left(1\right)=\left\{1\right\}\Rightarrow n=2\)
b.Tách tương tự nha
\(2n^2-3n+1=\left(2n^2-2n\right)-n+1=2n\left(n-1\right)-n+1\)\(\Rightarrow-n+1⋮n-1\Rightarrow-\left(n-1\right)⋮n-1\)
vậy với mọi x thuộc N đều t/m
b) tương tự nha
Tìm các giới hạn sau:
\(a,\dfrac{\left(2n+1\right)\left(3n-2\right)^2}{n^3+n-1}\)
\(b,\dfrac{2n-1}{3n^2+4n-1}\)
\(\lim\dfrac{\left(2n+1\right)\left(3n-2\right)^2}{n^3+n-1}=\lim\dfrac{n\left(2+\dfrac{1}{n}\right).n^2.\left(3-\dfrac{2}{n}\right)^2}{n^3\left(1+\dfrac{1}{n^2}-\dfrac{1}{n^3}\right)}\)
\(=\lim\dfrac{\left(2+\dfrac{1}{n}\right)\left(3-\dfrac{2}{n}\right)^2}{1+\dfrac{1}{n^2}-\dfrac{1}{n^3}}=\dfrac{2.3^2}{1}=18\)
\(\lim\dfrac{2n-1}{3n^2+4n-1}=\lim\dfrac{n\left(2-\dfrac{1}{n}\right)}{n^2\left(3+\dfrac{4}{n}-\dfrac{1}{n^2}\right)}=\lim\dfrac{2-\dfrac{1}{n}}{n\left(3+\dfrac{4}{n}-\dfrac{1}{n^2}\right)}=\dfrac{2}{+\infty}=0\)
tìm số nguyên n để :
a,\(\left(n+5\right)⋮\left(n+1\right)\)
b,\(\left(6n+4\right)⋮\left(2n+1\right)\)
a)
\(n+5⋮n+1\)
\(\Rightarrow n+1+4⋮n+1\)
\(\Rightarrow4⋮n+1\Rightarrow n+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
\(\Rightarrow n\in\left\{0;-2;1;-3;3;-5\right\}\)
\(a,\left(n+5\right)⋮\left(n+1\right)\Leftrightarrow\left(n+1\right)+4⋮\left(n+1\right)\)
\(\Leftrightarrow4⋮n+1\left(n\inℤ\right)\)
\(\Leftrightarrow n+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
\(\Leftrightarrow n=-2;0;-3;1;-5;3\)
Vậy \(n=-5;-3;-2;0;1;3\)
a) Ta có: \(\frac{n+5}{n+1}=\frac{n+1+4}{n+1}=1+\frac{4}{n+1}\)
Để (n+5) chia hết cho (n+1)
Thì 4 phải chia hết cho n+1
\(\Rightarrow n+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Lập bảng ta có:
n+1 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 0 | -2 | 1 | -3 | 3 | -5 |
Vậy số nguyên n thỏa mãn là
n = {-5;-3;-2;0;1;3}
b) \(\frac{6n+4}{2n+1}=\frac{3\left(2n+1\right)+1}{2n+1}=3+\frac{1}{2n+1}\)
Để (6n+4) chia hết cho (2n+1)
Thì 1 phải chia hết cho 2n+1
\(\Rightarrow2n+1\inƯ\left(1\right)=\left\{1;-1\right\}\)
2n+1 | 1 | -1 |
n | 0 | -1 |
Vậy n = {-1;0}
\(A=\dfrac{6n+1}{2n+1};\left(n\in Z\right)\)
Tìm số nguyên để A đạt GTLN
\(A=\dfrac{6n+3-2}{2n+1}=3-\dfrac{2}{2n+1}\)
Để A max thì 2/2n+1 min
mà n nguyên
nên 2n+1=-1
=>2n=-2
=>n=-1