Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hồ Quế Ngân
Xem chi tiết
Trần Việt Linh
11 tháng 9 2016 lúc 9:22

\(2\cdot2^2\cdot2^3\cdot2^4\cdot\cdot\cdot2^x=32768\)

\(\Leftrightarrow2^{1+2+3+4+\cdot\cdot\cdot+x}=2^{15}\)

\(\Leftrightarrow1+2+3+4+..+x=15\)

\(\Leftrightarrow\)\(\frac{\left(1+x\right)x}{2}=15\)

\(\Leftrightarrow x\left(x+1\right)=30=5\left(5+1\right)\)

Vậy x=5

Bài 2:

Bậc của đơn thức là 2+5+3=10

Bài 3:

\(\left|2x-\frac{1}{2}\right|+\frac{3}{7}=\frac{38}{7}\)

\(\Leftrightarrow\left|2x-\frac{1}{2}\right|=5\)

+)TH1: \(x\ge\frac{1}{4}\) thì bt trở thành

\(2x-\frac{1}{2}=5\Leftrightarrow2x=\frac{11}{2}\Leftrightarrow x=\frac{11}{4}\left(tm\right)\)

+)TH2: \(x< \frac{1}{4}\) thì pt trở thành

\(2x-\frac{1}{2}=-5\Leftrightarrow2x=-\frac{9}{2}\Leftrightarrow x=-\frac{9}{4}\left(tm\right)\)

Vậy x={-9/4;11/4}

Hồ Quế Ngân
Xem chi tiết
Lê Minh Anh
11 tháng 9 2016 lúc 9:55

2/ \(\frac{1}{2}x2y5z3=\left(\frac{1}{2}.2.5.3\right)xyz\)\(=15xyz\)

\(\Rightarrow\frac{1}{2}x2y5z3\)có bậc là 3

3/ \(\frac{x}{4}=\frac{9}{x}\Leftrightarrow x^2=9.4\Rightarrow x^2=36\) mà \(x>0\Rightarrow x=6\)

4/ \(\left|2x-\frac{1}{2}\right|+\frac{3}{7}=\frac{38}{7}\Rightarrow\left|2x+\frac{1}{2}\right|=\frac{35}{7}=5\Rightarrow\hept{\begin{cases}2x+\frac{1}{2}=5\Rightarrow2x=\frac{9}{2}\Rightarrow x=\frac{9}{4}\\2x+\frac{1}{2}=-5\Rightarrow2x=\frac{-11}{2}\Rightarrow x=\frac{-11}{4}\end{cases}}\)

Trần Quang Chiến
Xem chi tiết
Vũ
18 tháng 1 2016 lúc 17:49

Thi vòng 12 à bạn!!! Để mk chép đề mà làm 

_ Yuki _ Dễ thương _
Xem chi tiết
Phạm Nguyễn Tất Đạt
17 tháng 12 2016 lúc 8:53

\(\frac{x}{2^2}+\frac{x}{2^3}+\frac{x}{2^4}=\frac{x}{3^2}+\frac{x}{3^3}+\frac{x}{3^4}\)

\(\Rightarrow\frac{x}{2^2}+\frac{x}{2^3}+\frac{x}{2^4}-\frac{x}{3^2}-\frac{x}{3^3}-\frac{x}{3^4}=0\)

\(x\left(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{3^2}-\frac{1}{3^3}-\frac{1}{3^4}\right)=0\)

\(\left(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{3^2}-\frac{1}{3^3}-\frac{1}{3^4}\right)\ne0\)

\(\Rightarrow x=0\)

Lightning Farron
17 tháng 12 2016 lúc 8:53

\(\frac{x}{2^2}+\frac{x}{2^3}+\frac{x}{2^4}=\frac{x}{3^2}+\frac{x}{3^3}+\frac{x}{3^4}\)

\(\Leftrightarrow\frac{x}{2^2}+\frac{x}{2^3}+\frac{x}{2^4}-\frac{x}{3^2}-\frac{x}{3^3}-\frac{x}{3^4}=0\)

\(\Leftrightarrow x\left(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{3^2}-\frac{1}{3^3}-\frac{1}{3^4}\right)=0\)

\(\Leftrightarrow x=0\). Do \(\Leftrightarrow x=0\)

kiet cao duong
16 tháng 12 2016 lúc 22:17

bằng 0 bn

Nguyễn Huỳnh Hoa
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
29 tháng 6 2017 lúc 11:20

Ta có : \(\frac{x}{2^2}+\frac{x}{2^3}+\frac{x}{2^4}=\frac{x}{3^2}+\frac{x}{3^3}+\frac{x}{3^4}\)

<=> \(\frac{x}{2^2}+\frac{x}{2^3}+\frac{x}{2^4}-\frac{x}{3^2}-\frac{x}{3^3}-\frac{x}{3^4}=0\)

<=> \(x\left(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{3^2}-\frac{1}{3^3}-\frac{1}{3^4}\right)=0\)

Mà \(\left(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{3^2}-\frac{1}{3^3}-\frac{1}{3^4}\right)\ne0\)

Vậy : x = 0

Kiên-Messi-8A-Boy2k6
6 tháng 6 2018 lúc 10:36

\(\Rightarrow x.\left(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}\right)=x.\left(\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\right)\)

\(\Rightarrow x.\left(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}\right)-x.\left(\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\right)=0\)

\(\Rightarrow x=0\)

Vậy x=0 nha

Arima Kousei
6 tháng 6 2018 lúc 10:40

Ta có : 

\(\frac{x}{2^2}+\frac{x}{2^3}+\frac{x}{2^4}=\frac{x}{3^2}+\frac{x}{3^3}+\frac{x}{3^4}\)

\(\Rightarrow\frac{x}{2^2}+\frac{x}{2^3}+\frac{x}{2^4}-\left(\frac{x}{3^2}+\frac{x}{3^3}+\frac{x}{3^4}\right)=0\)

\(\Rightarrow\frac{x}{2^2}+\frac{x}{2^3}+\frac{x}{2^4}-\frac{x}{3^2}-\frac{x}{3^3}-\frac{x}{3^4}=0\)

\(\Rightarrow x\left(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{3^2}-\frac{1}{3^3}-\frac{1}{3^4}\right)=0\)

Mà \(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{3^2}-\frac{1}{3^3}-\frac{1}{3^4}\ne0\)

\(\Rightarrow x=0\)

Vậy \(x=0\)

~ Ủng hộ nhé 

Nguyễn Đăng Khôi
Xem chi tiết
zZz Cool Kid_new zZz
18 tháng 1 2019 lúc 20:57

Ta có:\(\left(x+2\right)^2\ge0\)

\(\Rightarrow3\left(x+2\right)^2\ge0\)

\(\Rightarrow3\left(x+2\right)^2+2\ge2\)

\(\Rightarrow\frac{8}{3\left(x+2\right)^2+2}\le4\left(1\right)\)

Ta lại có:

\(\left|x+3\right|+\left|x-1\right|=\left|x+3\right|+\left|1-x\right|\)

\(\ge\left|x+3+1-x\right|=4\left(2\right)\)

Dấu "=" xảy ra khi và chỉ khi:\(\left(x+3\right)\left(1-x\right)\ge0\)

\(\Leftrightarrow1\le x\le3\left(3\right)\)

Từ (1),(2) ta có:\(\frac{8}{3\left(x+2\right)^2+2}=4\)

\(\Leftrightarrow8=12\left(x+2\right)^2+8\)

\(\Leftrightarrow\left(x+2\right)^2=0\)

\(\Leftrightarrow x=-2\)

Thay x vào (3) ta thấy thỏa mãn 

Vậy \(x=-2\)

Xem chi tiết
PINK HELLO KITTY
Xem chi tiết
Nguyễn Thanh Hiền
Xem chi tiết