Giá trị x thỏa mãn \(\frac{x-3}{2-x}\)=\(\frac{2}{3}\)
tìm x
Tìm giá trị nguyên của x thỏa mãn:
2.22.23.24....2x=32768
Tìm bậc của đơn thức
\(\frac{1}{2}x^2y^5z^3\)
Tìm giá trị x>0 thỏa mãn:
\(\frac{x}{4}=\frac{9}{x}\)
Tìm giá trị x<0 thỏa mãn:
\(\text{|}2x-\frac{1}{2}\text{|}+\frac{3}{7}=\frac{38}{7}\)
\(2\cdot2^2\cdot2^3\cdot2^4\cdot\cdot\cdot2^x=32768\)
\(\Leftrightarrow2^{1+2+3+4+\cdot\cdot\cdot+x}=2^{15}\)
\(\Leftrightarrow1+2+3+4+..+x=15\)
\(\Leftrightarrow\)\(\frac{\left(1+x\right)x}{2}=15\)
\(\Leftrightarrow x\left(x+1\right)=30=5\left(5+1\right)\)
Vậy x=5
Bài 2:
Bậc của đơn thức là 2+5+3=10
Bài 3:
\(\left|2x-\frac{1}{2}\right|+\frac{3}{7}=\frac{38}{7}\)
\(\Leftrightarrow\left|2x-\frac{1}{2}\right|=5\)
+)TH1: \(x\ge\frac{1}{4}\) thì bt trở thành
\(2x-\frac{1}{2}=5\Leftrightarrow2x=\frac{11}{2}\Leftrightarrow x=\frac{11}{4}\left(tm\right)\)
+)TH2: \(x< \frac{1}{4}\) thì pt trở thành
\(2x-\frac{1}{2}=-5\Leftrightarrow2x=-\frac{9}{2}\Leftrightarrow x=-\frac{9}{4}\left(tm\right)\)
Vậy x={-9/4;11/4}
Tìm giá trị nguyên của x thỏa mãn:
2.22.23.24....2x=32768
Tìm bậc của đơn thức
\(\frac{1}{2}.\)x2y5z3
Tìm giá trị x>0 thỏa mãn:
\(\frac{x}{4}=\frac{9}{x}\)
Tìm giá trị x<0 thỏa mãn:
|2x−\(\frac{1}{2}\)|+\(\frac{3}{7}\)=\(\frac{38}{7}\)
2/ \(\frac{1}{2}x2y5z3=\left(\frac{1}{2}.2.5.3\right)xyz\)\(=15xyz\)
\(\Rightarrow\frac{1}{2}x2y5z3\)có bậc là 3
3/ \(\frac{x}{4}=\frac{9}{x}\Leftrightarrow x^2=9.4\Rightarrow x^2=36\) mà \(x>0\Rightarrow x=6\)
4/ \(\left|2x-\frac{1}{2}\right|+\frac{3}{7}=\frac{38}{7}\Rightarrow\left|2x+\frac{1}{2}\right|=\frac{35}{7}=5\Rightarrow\hept{\begin{cases}2x+\frac{1}{2}=5\Rightarrow2x=\frac{9}{2}\Rightarrow x=\frac{9}{4}\\2x+\frac{1}{2}=-5\Rightarrow2x=\frac{-11}{2}\Rightarrow x=\frac{-11}{4}\end{cases}}\)
Giá trị của x thỏa mãn \(\frac{x-1}{x+2}=\frac{x-2}{x+3}\)
Giá trị của x thỏa mãn \(\frac{x+9}{x+5}=\frac{2}{7}\)
Số giá trị của x thỏa mãn \(\left|x+\frac{5}{2}\right|+\left|\frac{2}{5}-x\right|=0\)
Giá trị x thỏa mãn
\(\frac{x}{2^2}+\frac{x}{2^3}+\frac{x}{2^4}=\frac{x}{3^2}+\frac{x}{3^3}+\frac{x}{3^4}\)
\(\frac{x}{2^2}+\frac{x}{2^3}+\frac{x}{2^4}=\frac{x}{3^2}+\frac{x}{3^3}+\frac{x}{3^4}\)
\(\Rightarrow\frac{x}{2^2}+\frac{x}{2^3}+\frac{x}{2^4}-\frac{x}{3^2}-\frac{x}{3^3}-\frac{x}{3^4}=0\)
\(x\left(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{3^2}-\frac{1}{3^3}-\frac{1}{3^4}\right)=0\)
Mà \(\left(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{3^2}-\frac{1}{3^3}-\frac{1}{3^4}\right)\ne0\)
\(\Rightarrow x=0\)
\(\frac{x}{2^2}+\frac{x}{2^3}+\frac{x}{2^4}=\frac{x}{3^2}+\frac{x}{3^3}+\frac{x}{3^4}\)
\(\Leftrightarrow\frac{x}{2^2}+\frac{x}{2^3}+\frac{x}{2^4}-\frac{x}{3^2}-\frac{x}{3^3}-\frac{x}{3^4}=0\)
\(\Leftrightarrow x\left(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{3^2}-\frac{1}{3^3}-\frac{1}{3^4}\right)=0\)
\(\Leftrightarrow x=0\). Do \(\Leftrightarrow x=0\)
Giá trị của x thỏa mãn
\(\frac{x}{2^2}+\frac{x}{2^3}+\frac{x}{2^4}=\frac{x}{3^2}+\frac{x}{3^3}+\frac{x}{3^4}\)x=?
Ta có : \(\frac{x}{2^2}+\frac{x}{2^3}+\frac{x}{2^4}=\frac{x}{3^2}+\frac{x}{3^3}+\frac{x}{3^4}\)
<=> \(\frac{x}{2^2}+\frac{x}{2^3}+\frac{x}{2^4}-\frac{x}{3^2}-\frac{x}{3^3}-\frac{x}{3^4}=0\)
<=> \(x\left(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{3^2}-\frac{1}{3^3}-\frac{1}{3^4}\right)=0\)
Mà \(\left(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{3^2}-\frac{1}{3^3}-\frac{1}{3^4}\right)\ne0\)
Vậy : x = 0
\(\Rightarrow x.\left(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}\right)=x.\left(\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\right)\)
\(\Rightarrow x.\left(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}\right)-x.\left(\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\right)=0\)
\(\Rightarrow x=0\)
Vậy x=0 nha
Ta có :
\(\frac{x}{2^2}+\frac{x}{2^3}+\frac{x}{2^4}=\frac{x}{3^2}+\frac{x}{3^3}+\frac{x}{3^4}\)
\(\Rightarrow\frac{x}{2^2}+\frac{x}{2^3}+\frac{x}{2^4}-\left(\frac{x}{3^2}+\frac{x}{3^3}+\frac{x}{3^4}\right)=0\)
\(\Rightarrow\frac{x}{2^2}+\frac{x}{2^3}+\frac{x}{2^4}-\frac{x}{3^2}-\frac{x}{3^3}-\frac{x}{3^4}=0\)
\(\Rightarrow x\left(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{3^2}-\frac{1}{3^3}-\frac{1}{3^4}\right)=0\)
Mà \(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{3^2}-\frac{1}{3^3}-\frac{1}{3^4}\ne0\)
\(\Rightarrow x=0\)
Vậy \(x=0\)
~ Ủng hộ nhé
Tìm giá trị x thỏa mãn: \(|x+3|+|x-1|=\frac{8}{3.\left(x+2\right)^2+2}\)
Ta có:\(\left(x+2\right)^2\ge0\)
\(\Rightarrow3\left(x+2\right)^2\ge0\)
\(\Rightarrow3\left(x+2\right)^2+2\ge2\)
\(\Rightarrow\frac{8}{3\left(x+2\right)^2+2}\le4\left(1\right)\)
Ta lại có:
\(\left|x+3\right|+\left|x-1\right|=\left|x+3\right|+\left|1-x\right|\)
\(\ge\left|x+3+1-x\right|=4\left(2\right)\)
Dấu "=" xảy ra khi và chỉ khi:\(\left(x+3\right)\left(1-x\right)\ge0\)
\(\Leftrightarrow1\le x\le3\left(3\right)\)
Từ (1),(2) ta có:\(\frac{8}{3\left(x+2\right)^2+2}=4\)
\(\Leftrightarrow8=12\left(x+2\right)^2+8\)
\(\Leftrightarrow\left(x+2\right)^2=0\)
\(\Leftrightarrow x=-2\)
Thay x vào (3) ta thấy thỏa mãn
Vậy \(x=-2\)
Cho x, y, z thỏa mãn x+y+z=3. Tìm giá trị nhỏ nhất của:
\(\frac{x^2}{x^2+2y^3}+\frac{y^2}{y^2+2z^3}+\frac{z^2}{z^2+2^3}\)
\(\left(\frac{x}{2}\right)^2+\left(\frac{x}{3}\right)^2+\left(\frac{x}{4}\right)^2+\left(\frac{x}{5}\right)^2+\left(\frac{x}{6}\right)^2+\left(\frac{x}{7}\right)^2\) . Tìm giá trị thỏa mãn của x
Cho các số thực x, y, z > 0 thỏa mãn x + y + z =3. Tìm giá trị nhỏ nhất của P =\(\frac{3+x^2}{y+z}+\frac{3+y^2}{x+z}+\frac{3+z^2}{x+y}\)