Tìm cá số nguyên x,y thỏa mãn phương trình:
\(x^2-2x=27x^3\)
Tìm số nguyên x,y thỏa mãn 2 phương trình sau : 2y^2x + x + y + 1 = x^2 + 2y^2 + xy
=>(x-1)(2y^2+y+1)= -2
lập hệ phương trình ng nguyên các ước của hai rồi giải
Tìm các cặp số (x,y) nguyên dương thỏa mãn phương trình sau:x^2-y^2+2x-4y-10=0
\(x^2-y^2+2x-4y-10=0\)
\(\Rightarrow\left(x^2+2x+1\right)-\left(y^2+4y+4\right)-7=0\)
\(\Rightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\)
\(\Rightarrow\left(x+1+y+2\right)\left(x+1-y-2\right)=4\)
\(\Rightarrow\left(x-y-1\right)\left(x+y+3\right)=7\)
Vì \(x,y\) nguyên dương nên \(x+y+3>x-y-1>0\)
\(\Rightarrow\hept{\begin{cases}x+y+3=7\\x-y-1=1\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=3\\y=1\end{cases}}\)
1, Tìm tất cả các số nguyên x, y thỏa mãn phương trình 2x ^ 2 + y ^ 2 + 3xy - 3x - 3y + 11 = 0
Ta có: \(2x^2+y^2+3xy-3x-3y+11=0\)
=>\(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)
\(\Delta=\left(3y-3\right)^2-4\cdot2\cdot\left(y^2-3y+11\right)\)
\(=9y^2-18y+9-8y^2+24y-88=y^2+6y-79\)
\(=y^2+6y+9-88=\left(y+3\right)^2-88\)
Để phương trình có nghiệm nguyên thì Δ phải là số chính phương
=>\(\left(y+3\right)^2-88=k^2\left(k\in Z\right)\)
=>\(\left(y+3\right)^2-k^2=88\)
=>(y+3-k)(y+3+k)=88
=>(y+3-k;y+3+k)∈{(1;88);(88;1);(-1;-88);(-88;-1);(2;44);(44;2);(-2;-44);(-44;-2);(4;22);(-4;-22);(22;4);(-22;-4);(8;11);(-8;-11);(11;8);(-11;-8)}
TH1: y+3-k=1 và y+3+k=88
=>y+3-k+y+3+k=1+88
=>2y+6=89
=>2y=83
=>y=41,5(loại)
TH2: y+3-k=88 và y+3+k=1
=>y+3-k+y+3+k=1+88
=>2y+6=89
=>2y=83
=>y=41,5(loại)
TH3: y+3-k=-1 và y+3+k=-88
=>=>y+3-k+y+3+k=-1-88
=>2y+6=-89
=>2y=-95
=>y=-47,5(loại)
TH4: y+3-k=-88 và y+3+k=-1
=>=>y+3-k+y+3+k=-1-88
=>2y+6=-89
=>2y=-95
=>y=-47,5(loại)
TH5: y+3-k=2 và y+3+k=44
=>y+3-k+y+3+k=2+44
=>2y+6=46
=>2y=40
=>y=20(nhận)
\(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)
=>\(2x^2+x\left(3\cdot20-3\right)+20^2-3\cdot20+11=0\)
=>\(2x^2+57x+351=0\)
=>\(\left(2x+39\right)\left(x+9\right)=0\)
=>\(\left[\begin{array}{l}2x+39=0\\ x+9=0\end{array}\right.\Rightarrow\left[\begin{array}{l}2x=-39\\ x=-9\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-\frac{39}{2}\left(loại\right)\\ x=-9\left(nhận\right)\end{array}\right.\)
TH6: y+3-k=44 và y+3+k=2
=>y+3-k+y+3+k=2+44
=>2y+6=46
=>2y=40
=>y=20(nhận)
\(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)
=>\(2x^2+x\left(3\cdot20-3\right)+20^2-3\cdot20+11=0\)
=>\(2x^2+57x+351=0\)
=>\(\left(2x+39\right)\left(x+9\right)=0\)
=>\(\left[\begin{array}{l}2x+39=0\\ x+9=0\end{array}\right.\Rightarrow\left[\begin{array}{l}2x=-39\\ x=-9\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-\frac{39}{2}\left(loại\right)\\ x=-9\left(nhận\right)\end{array}\right.\)
TH7: y+3-k=-2 và y+3+k=-44
=>y+3-k+y+3+k=-2-44
=>2y+6=-46
=>2y=-52
=>y=-26
Ta có: \(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)
=>\(2x^2+x\cdot\left\lbrack3\cdot\left(-26\right)-3\right\rbrack+\left(-26\right)^2-3\cdot\left(-26\right)+11=0\)
=>\(2x^2-81x+765=0\)
=>(x-15)(2x-51)=0
=>\(\left[\begin{array}{l}x-15=0\\ 2x-51=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=15\left(nhận\right)\\ x=\frac{51}{2}\left(loại\right)\end{array}\right.\)
TH8: y+3-k=-44 và y+3+k=-2
=>y+3-k+y+3+k=-2-44
=>2y+6=-46
=>2y=-52
=>y=-26
Ta có: \(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)
=>\(2x^2+x\cdot\left\lbrack3\cdot\left(-26\right)-3\right\rbrack+\left(-26\right)^2-3\cdot\left(-26\right)+11=0\)
=>\(2x^2-81x+765=0\)
=>(x-15)(2x-51)=0
=>\(\left[\begin{array}{l}x-15=0\\ 2x-51=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=15\left(nhận\right)\\ x=\frac{51}{2}\left(loại\right)\end{array}\right.\)
TH9: y+3-k=4 và y+3+k=22
=>y+3-k+y+3+k=4+22
=>2y+6=26
=>2y=20
=>y=10
Ta có: \(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)
=>\(2x_{}^2+x\left(3\cdot10-3\right)+10^2-3\cdot10+11=0\)
=>\(2x^2+27x+81=0\)
=>\(2x^2+18x+9x+81=0\)
=>(x+9)(2x+9)=0
=>\(\left[\begin{array}{l}x+9=0\\ 2x+9=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-9\left(nhận\right)\\ x=-\frac92\left(loại\right)\end{array}\right.\)
TH10: y+3-k=22 và y+3+k=4
=>y+3-k+y+3+k=4+22
=>2y+6=26
=>2y=20
=>y=10
Ta có: \(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)
=>\(2x_{}^2+x\left(3\cdot10-3\right)+10^2-3\cdot10+11=0\)
=>\(2x^2+27x+81=0\)
=>\(2x^2+18x+9x+81=0\)
=>(x+9)(2x+9)=0
=>\(\left[\begin{array}{l}x+9=0\\ 2x+9=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-9\left(nhận\right)\\ x=-\frac92\left(loại\right)\end{array}\right.\)
TH11: y+3-k=-4 và y+3+k=-22
=>y+3-k+y+3+k=-4-22
=>2y+6=-26
=>2y=-32
=>y=-16
Ta có: \(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)
=>\(2x_{}^2+x\cdot\left\lbrack3\cdot\left(-16\right)-3\right\rbrack+\left(-16\right)^2-3\cdot\left(-16\right)+11=0\)
=>\(2x^2-51x+315=0\)
=>\(2x^2-30x-21x+315=0\)
=>(x-15)(2x-21)=0
=>\(\left[\begin{array}{l}x-15=0\\ 2x-21=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=15\left(nhận\right)\\ x=\frac{21}{2}\left(loại\right)\end{array}\right.\)
TH12: y+3-k=-22 và y+3+k=-4
=>y+3-k+y+3+k=-4-22
=>2y+6=-26
=>2y=-32
=>y=-16
Ta có: \(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)
=>\(2x_{}^2+x\cdot\left\lbrack3\cdot\left(-16\right)-3\right\rbrack+\left(-16\right)^2-3\cdot\left(-16\right)+11=0\)
=>\(2x^2-51x+315=0\)
=>\(2x^2-30x-21x+315=0\)
=>(x-15)(2x-21)=0
=>\(\left[\begin{array}{l}x-15=0\\ 2x-21=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=15\left(nhận\right)\\ x=\frac{21}{2}\left(loại\right)\end{array}\right.\)
TH13: y+3-k=8 và y+3+k=11
=>y+3-k+y+3+k=8+11
=>2y+6=19
=>2y=13
=>y=6,5(loại)
TH14: y+3-k=11 và y+3+k=8
=>y+3-k+y+3+k=8+11
=>2y+6=19
=>2y=13
=>y=6,5(loại)
TH15: y+3-k=-8 và y+3+k=-11
=>y+3-k+y+3+k=-8-11
=>2y+6=-19
=>2y=-25
=>y=-12,5(loại)
TH16: y+3-k=-11 và y+3+k=-8
=>y+3-k+y+3+k=-8-11
=>2y+6=-19
=>2y=-25
=>y=-12,5(loại)
Cho phương trình: \(x^2-3y^2+2xy-2x-10y+4\)
a) Tìm nghiệm \(\left(x;y\right)\) của phương trình thỏa mãn: \(x^2+y^2=10\)
b) Tìm nghiệm nguyên của phương trình đã cho
Tìm các cặp số nguyên (x; y) thỏa mãn phương trình: \(2x^2+2y^2 -2xy+y+x-10=0\)
Ta viết phương trình về dạng: \(2x^2-\left(2y-1\right)x+\left(2y^2+y-10\right)=0\)
Coi đây là phương trình bậc 2 theo ẩn x thì \(\Delta_x=\left(2y-1\right)^2-8\left(2y^2+y-10\right)=-12y^2-12y+81\)
Điều kiện để phương trình có nghiệm là \(\Delta_x\ge0\)hay \(-12y^2-12y+81\ge0\)\(\Leftrightarrow\frac{-1-2\sqrt{7}}{2}\le y\le\frac{-1+2\sqrt{7}}{2}\)mà y nguyên nên \(-3\le y\le2\)
Lập bảng:
| \(y\) | \(-3\) | \(-2\) | \(-1\) | \(0\) | \(1\) | \(2\) |
| \(x\) | \(-1\) | \(\varnothing\) | \(-3\) | \(2\) | \(\varnothing\) | \(0\) |
Vậy phương trình có 4 cặp nghiệm nguyên \(\left(x,y\right)=\left\{\left(2,0\right);\left(0,2\right);\left(-1,-3\right);\left(-3;-1\right)\right\}\)
Câu 1: Cho a, b là bình phương của 2 số nguyên lẻ liên tiếp. Chứng minh: ab – a – b + 1 chia hết 48
Câu 2: Tìm tất cả các số nguyên x y, thỏa mãn x > y > 0: x^3 + 7y = y^3 +7x
Câu 3: Giải phương trình : (8x – 4x^2 – 1)(x^2 + 2x + 1) = 4(x^2 + x + 1)
bài 2 :
x3+7y=y3+7x
x3-y3-7x+7x=0
(x-y)(x2+xy+y2)-7(x-y)=0
(x-y)(x2+xy+y2-7)=0
\(\left\{{}\begin{matrix}x-y=0\Rightarrow x=y\left(loại\right)\\x^{2^{ }}+xy+y^2-7=0\end{matrix}\right.\)
x2+xy+y2=7 (*)
Giải pt (*) ta đc hai nghiệm phan biệt:\(\left[{}\begin{matrix}x=1va,y=2\\x=2va,y=1\end{matrix}\right.\)
Tìm các cặp số nguyên x , y thỏa mãn phương trình: x^3 = y^3 - 2y^2 + 3y - 1
Tìm các số nguyên dương x,y thỏa mãn phương trình: xy+2x=32-\(\frac{x}{y}\)
Bài 1:Cho hệ
mx+y=3 (1)
9x+my=2m+3 (2)
Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn: 3x+2y=9
Bài 2:Cho hệ
mx+y= m^2
x+my=1 (m là tham số)
Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x+y>0