Bài 12. Cho hình vẽ
a) Chứng minh: AB // MN
b) Tính góc B1 và các góc ở đình N
\(2.cho hình thang ABCD, đáy AB và CD. Các phân giác góc ngoài tại đỉnh A và D cắt nhau ở M. Các phân giác của các góc ngoài tại đỉnh B và C cắt nhau ở N. a, Chứng minh MN// CD b, Tính chu vi hình thang ABCD biết MN=4cm\)
BÀI 1: Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:
a) ∆ABE = ∆ADC b) Góc BMC = 120o
Bài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).
a) Chứng minh: EM + HC = NH.
b) Chứng minh: EN // FM.
Bài 3:Cho cạnh hình vuông ABCD có độ dài là 1. Trên các cạnh AB, AD lấy các điểm P, Q sao cho chu vi DAPQ bằng 2.
Chứng minh rằng : Góc PCQ = 45o
Bài 4:Cho tam giác vuông cân ABC (AB = AC), tia phân giác của các góc B và C cắt AC và AB lần lượt tại E và D.
a) Chứng minh rằng: BE = CD; AD = AE.
b) Gọi I là giao điểm của BE và CD. AI cắt BC ở M, chứng minh rằng các ∆MAB; MAC là tam giác vuông cân.
c) Từ A và D vẽ các đường thẳng vuông góc với BE, các đường thẳng này cắt BC lần lượt ở K và H. Chứng minh rằng KH = KC.
Bài 5: Cho tam giác cân ABC (AB = AC ). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng:
a) DM = EN
b) Đường thẳng BC cắt MN tại trung điểm I của MN.
c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.
Bài 6: Cho hình thang ABCD ( AB // CD ) có AB = a; BC = b; CD = c; DA = d ( d < c). Các
tia phân giác trong của góc A và góc D cắt nhau tại M, các tia phân giác của góc ngoài tại đỉnh
B và C cắt nhau tại N.
a) Chứng minh rằng MN// AB b) Tính độ dài MN.
Cho tam giác ABC có AB =1/2BC , góc B =2 lần góc C .gọi M là trung điểm của BC .Kẻ MN vuông góc với BC (N thuộc AC)
a) Chứng minh BN là tia phân giác của góc ABC
b) tính các góc của tam giác ABC .
Vẽ hình và giải bài giúp mình với
Bài 5: Tìm a, b sao cho: x^3+ax+b chia hết cho x^2+2x-2
Bài 4: Hình thang ABCD ( AB song song với CD ). Các đường phân giác của góc ngoài tại A và D cắt nhau ở M. Các đường phân giác của góc ngoài tại B và C cắt nhau ở N. Chứng minh rằng:
a) MN song song với CD
b) Chu vi ABCD= ?, biết MN= 4cm
Bài 5: Tam giác ABC; D thuộc AB, E thuộc AC. BD= CE. M thuộc BE: MB= ME. N thuộc CD: NC= ND. MN cắt AB ở G. MN cắt AC ở H. Chứng minh rằng: Tam giác AGH cân.
5:Cho ∆ ABC vuông tại A có M là trung điểm BC.
a) Biết BC = 12 cm. Tính AM?
b) Từ M, vẽ MN vuông góc AB ( N thuộc AB), MQ vuông góc AC ( Q thuộc AC). Chứng minh: Tứ giác
ANMQ là hình chữ nhật.
c) Chứng minh: NMCQ là hình bình hành.
d) Gọi H là điểm đối xứng của M qua N, K là điểm đối xứng của M qua Q.
Chứng minh: A là trung điểm của HK
a: Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến ứng với cạnh huyền BC
nên \(AM=\dfrac{BC}{2}=6\left(cm\right)\)
Cho hình tháng ABCD (AB // CD). Các đường phân giác của các góc ngoài tại A và D cắt nhau ở M. Các đường phân giác của các góc ngoài tại B và C cắt nhau tại N.
a) Chứng minh: MN // CD
b) Tính chu vì hình thang ABCD, biết MN= 4 cm
Gọi trung điểm của AD là P
trung điểm của BC là Q
=>PQ là đường trung bình của hình thang ABCD
=>MN//DC
Lại có góc ngoài của góc A và D kề nhau
=> hai tia phân giác của góc này hợp với nhau 1 góc 90 độ => góc M =90 độ
Tương tự có góc N =90 độ
Xét tam giác AMD có góc M =90 độ
P là trung điểm của AD
=> MP=PA=> tam giác MPA cân ở P => Góc MAP = góc AMP => MP//AB
Tương tự có QN//AB
mà MN//AB =>M, P, Q, N thẳng hàng
=>mn//\ba. Mà BA//DC => MN//DC
Bạn cho mình hỏi, ở đoạn suy ra PQ là đường trung bình của hình thang ABCD, rồi suy ra MN //DC là sao? Nếu đã suy ra được rồi thì cần gì phải chứng minh đoạn dưới nữa. Ở phần đó, bạn có viết nhầm hay không? Bạn giải thích giúp mình với
Bài 1. Cho hình bình hành ABCD có góc D=60 độ. Kẻ AM vuông góc với DC và CN vuông góc AB.
a)Tứ giác ANCM là hình gì?Vì sao?
b)Chứng minh các đường thẳng AC,BD,MN đồng quy
Bài 2/Cho tam giác cân ABC cân tại A, vẽ đường cao AH, vẽ trung điểm M của đoạn thẳng AC, vẽ điểm N đối xứng với H qua M
a)Tứ giác AHCN là hình gì?Vì sao?
b)Chứng minh tứ giác ABHN là hình bình hành
Giúp mình nhé, các bạn không cần vẽ hình nha. Thanks.
1) Cho ABCD là hình thang cân ( AB // CD )
a) Biết góc B = 2 lần góc D. Tính các góc của hình thang.
b) phân giác của góc b và góc C cắt nhau tại điiểm I. Chứng minh tam giác BIC VUÔNG.
2) ABCD là hình thang ( AB//CD ), M,N lần lượt là trung điểm của AB, CD. Chứng minh nếu MN vuông góc vs AB thì ABCD là hình thang cân.