Tìm x nguyên để các biểu thức sau nhận giá trị nguyên :
a) \(\frac{x}{x+3}\)
b) \(\frac{x-1}{2x+1}\)
Cho biểu thức P=\(\left(\frac{\text{1}}{x^2+x+1}+\frac{1}{x^2-x}+\frac{2x}{1-x^3}\right).\left(x^2-x\right)\)
a) Rút gọn biểu thức P?
b) tìm các giá trị nguyên của x để P nhận giá trị nguyên ?
Cho biểu thức A=\(\left(\frac{1}{1-x}+\frac{2}{1+x}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)
a, Rút gọn A
b, Tìm các giá trị nguyên của x để biểu thức A nhận giá trị nguyên
c, Tìm x để IaI=A
\(ĐKXĐ:x\ne\pm1\)
a) \(A=\left(\frac{1}{1-x}+\frac{2}{1+x}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)
\(=\left(\frac{\left(1+x\right)}{\left(1+x\right)\left(1-x\right)}+\frac{2\left(1-x\right)}{\left(1+x\right)\left(1-x\right)}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)
\(=\frac{1+x+2-2x-5+x}{1-x^2}:\frac{2x-1}{1-x^2}\)
\(=\frac{8}{1-x^2}.\frac{1-x^2}{2x-1}=\frac{8}{2x-1}\)
b) Để A nguyên thì \(\frac{8}{2x-1}\inℤ\)
\(\Leftrightarrow8⋮2x-1\Rightarrow2x-1\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
Mà dễ thấy 2x - 1 lẻ nên\(2x-1\in\left\{\pm1\right\}\)
+) \(2x-1=1\Rightarrow x=1\left(ktmđkxđ\right)\)
+) \(2x-1=-1\Rightarrow x=0\left(tmđkxđ\right)\)
Vậy x nguyên bằng 0 thì A nguyên
c) \(\left|A\right|=A\Leftrightarrow A\ge0\)
\(\Rightarrow\frac{8}{2x-1}\ge0\Rightarrow2x-1>0\Leftrightarrow x>\frac{1}{2}\)
Vậy \(x>\frac{1}{2}\)thì |A| = A
a, \(A=\left(\frac{1}{1-x}+\frac{2}{1+x}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}\left(x\ne\frac{1}{2};x\ne\pm1\right)\)
\(\Leftrightarrow A=\left(\frac{1+x}{\left(1-x\right)\left(1+x\right)}+\frac{2-2x}{\left(1-x\right)\left(1+x\right)}-\frac{5-x}{\left(1-x\right)\left(1+x\right)}\right):\frac{\left(x+1\right)\left(x-1\right)}{2x-1}\)
\(\Leftrightarrow A=\frac{1+x+2-2x-5+x}{\left(1-x\right)\left(1+x\right)}\cdot\frac{\left(x-1\right)\left(x+1\right)}{2x-1}\)
\(\Leftrightarrow A=\frac{-2\left(1-x^2\right)}{\left(1-x^2\right)\left(2x-1\right)}=\frac{2}{2x-1}\)
Vậy \(A=\frac{2}{2x-1}\left(x\ne\frac{1}{2};x\ne\pm1\right)\)
b) \(A=\frac{2}{2x-1}\left(x\ne\frac{1}{2};x\ne\pm1\right)\)
Để A nhận giá trị nguyên thì 2 chia hết cho 2x-1
Mà x nguyên => 2x-1 nguyên
=> 2x-1 thuộc Ư (2)={-2;-1;1;2}
Ta có bảng
2x-1 | -2 | -1 | 1 | 2 |
2x | -1 | 0 | 2 | 3 |
x | -1/2 | 0 | 1 | 3/2 |
Đối chiếu điều kiện
=> x=0
Cho biểu thức Q = \(\frac{x+3}{2x+1}\)- \(\frac{x-7}{2x+1}\)
a, Thu gọn biểu thức Q
b, Tìm các giá trị nguyên của x để Q nhận giá trị nguyên
a) \(Q=\frac{x+3}{2x+1}-\frac{x-7}{2x+1}\left(ĐK:x\ne-\frac{1}{2}\right)\)
\(=\frac{x+3-x+7}{2x+1}=\frac{10}{2x+1}\)
b) Để Q nguyên \(\Leftrightarrow\frac{10}{2x+1}\in Z\)
=> \(2x+1\inƯ\left(10\right)\)
=> \(2x+1\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)
Ta có bảng sau:
2x+1 | 1 | -1 | 2 | -2 | 4 | -4 | 10 | -10 |
x | 0 | -1 | \(\frac{1}{2}\) (loại) | \(-\frac{3}{2}\)(loại) | \(\frac{3}{2}\)(loại) | \(-\frac{5}{2}\)(loại) | \(\frac{9}{2}\)(loại) | \(-\frac{11}{2}\)(loại) |
Vậy \(x\in\left\{0;-1\right\}\)
cho biểu thức A = \(\left(\frac{2x}{x-3}-\frac{x-1}{x+3}+\frac{x^2+1}{9-x^2}\right):\left(1-\frac{x-1}{x+3}\right)\)
a) rút gọn biểu thức
b) tính giá trị biểu thức A biết | x - 5 | = 2
c) tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên
Tìm x nguyên để biểu thức sau nhận giá trị nguyên :
a ) \(\frac{x}{x+3}\)
b ) \(\frac{x-1}{2x+1}\)
cho biểu thức A = \(\left(\frac{2x}{x-3}-\frac{x+1}{x+3}+\frac{x^2+1}{9-x^2}\right):\left(1-\frac{x-1}{x+3}\right)\)
a) rút gọn biểu thức
b) tính giá trị biểu thức A biết | x - 5 | = 2
c) tìm giá trị nguyên cảu x để biếu thức A nhận giá trị nguyên
ĐKXĐ : \(x\ne\pm3\)
a) \(A=\left(\frac{2x}{x-3}-\frac{x+1}{x+3}+\frac{x^2+1}{9-x^2}\right):\left(1-\frac{x-1}{x+3}\right)\)
\(A=\left(\frac{-2x\left(3+x\right)}{\left(3-x\right)\left(3+x\right)}-\frac{\left(x+1\right)\left(3-x\right)}{\left(x+3\right)\left(3-x\right)}+\frac{x^2+1}{\left(3-x\right)\left(3+x\right)}\right):\left(\frac{x+3}{x+3}-\frac{x-1}{x+3}\right)\)
\(A=\left(\frac{-2x^2-6x+x^2-2x-3+x^2+1}{\left(3-x\right)\left(3+x\right)}\right):\left(\frac{x+3-x+1}{x+3}\right)\)
\(A=\left(\frac{-8x-2}{\left(3-x\right)\left(3+x\right)}\right):\left(\frac{4}{x+3}\right)\)
\(A=\frac{-2\left(4x+1\right)\left(x+3\right)}{\left(3-x\right)\left(3+x\right)4}\)
\(A=\frac{-\left(4x+1\right)}{2\left(3-x\right)}\)
\(A=\frac{4x+1}{2\left(x-3\right)}\)
b) \(\left|x-5\right|=2\)
\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}}\)
Mà ĐKXĐ x khác 3 => ta xét x = 7
\(A=\frac{4\cdot7+1}{2\cdot\left(7-3\right)}=\frac{29}{8}\)
c) Để A nguyên thì 4x + 1 ⋮ 2x - 3
<=> 4x - 6 + 7 ⋮ 2x - 3
<=> 2 ( 2x - 3 ) + 7 ⋮ 2x - 3
Mà 2 ( 2x - 3 ) ⋮ ( 2x - 3 ) => 7 ⋮ 2x - 3
=> 2x - 3 thuộc Ư(7) = { 1; -1; 7; -7 }
=> x thuộc { 2; 1; 5; -2 }
Vậy .....
a) ĐKXĐ: \(x\ne\pm3\)
\(A=\frac{2x\left(x+3\right)-\left(x+1\right)\left(x-3\right)-\left(x^2+1\right)}{x^2-9} : \frac{x+3-\left(x-1\right)}{x+3}\)
\(A=\frac{2x^2-6x-x^2+2x+3-x^2-1}{x^2-9} : \frac{4}{x+3}\)
\(A=\frac{-4x+2}{x^2+9} : \frac{4}{x+3}\)
\(A=\frac{2\left(1-2x\right)}{\left(x+3\right)\left(x-3\right)}\cdot\frac{x+3}{4}=\frac{1-2x}{2x-6}\)
b)
Có 2 trường hợp:
T.Hợp 1:
\(x-5=2\Leftrightarrow x=7\)(thỏa mã ĐKXĐ)
thay vào A ta được: A=\(-\frac{13}{8}\)
T.Hợp 2:
\(x-5=-2\Leftrightarrow x=3\)(Không thỏa mãn ĐKXĐ)
Vậy không tồn tại giá trị của A tại x=3
Vậy với x=7 thì A=-13/8
c)
\(\frac{1-2x}{2x-6}=\frac{1-\left(2x-6\right)-6}{2x-6}=-1-\frac{5}{2x-6}\)
Do -1 nguyên, để A nguyên thì \(-\frac{5}{2x-6}\inℤ\)
Để \(-\frac{5}{2x-6}\inℤ\)thì \(2x-6\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Do 2x-6 chẵn, để x nguyên thì 2x-6 là 1 số chẵn .
Vậy không có giá trị nguyên nào của x để A nguyên
Câu 1:
\(P=\sqrt{a\left(a+b+c\right)+bc}+\sqrt{b\left(a+b+c\right)+ac}+\sqrt{c\left(a+b+c\right)+ab}\)
\(P=\sqrt{\left(a+b\right)\left(a+c\right)}+\sqrt{\left(b+a\right)\left(b+c\right)}+\sqrt{\left(c+a\right)\left(c+b\right)}\)
Áp dụng BĐT \(\sqrt{xy}\le\frac{x+y}{2}\)
\(P\le\frac{a+b+a+c}{2}+\frac{b+a+b+c}{2}+\frac{c+a+c+b}{2}\)
\(=\frac{2a+b+c}{2}+\frac{2b+a+c}{2}+\frac{2c+a+b}{2}\)
\(=\frac{\left(2a+a+a\right)+\left(2b+b+b\right)+\left(2c+c+c\right)}{2}\)
\(=\frac{4\cdot\left(a+b+c\right)}{2}=\frac{4\cdot2}{2}=4\)
Vậy \(maxP=4\Leftrightarrow a=b=c=\frac{2}{3}\)
Cho biểu thức :
\(A=\left(\frac{x^2-2x}{2x^2+8}-\frac{2x^2}{8-4x+2x^2-x^3}\right)\left(1-\frac{1}{x}-\frac{2}{x^2}\right)\)
a,Tìm x giá trị của A được xác định. Rút gọn biểu thức A
b, Tìm giá trị nguyên của x để A nhận giá rị nguyên
cho biểu thức
\(P=\left(\frac{1}{x+1-\frac{1}{x-1+\frac{1}{x}}}-\frac{1}{x}\right)\cdot\left(x+\frac{\frac{1}{2x}}{1-\frac{1}{x}}-\frac{\frac{1}{2x}}{1+\frac{1}{x}}\right)\)
a) Rút gọn P;
b) tính giá trị của P với x=0,9;
c) Tìm x để P=0.
d) Tìm các giá trị nguyên của x để P nhận giá trị nguyên.
Cho biểu thức A=\(\left(\frac{x^2-2x}{2x^2+8}-\frac{2x^2}{8-4x+2x^2-x^3}\right)\left(1-\frac{1}{x}-\frac{2}{x^2}\right)\)
a) Tìm x để giá trị của A được xác định. Rút gọn biểu thức A
b) Tìm giá trị nguyên của x để A nhận giá trị nguyên
Mọi người giúp mình với ạ!! Mình đang rất cần. Chân thành cảm ơn