Tính:
1) ( 1998 . 1999 - 1998 . 1998 - 1000 - 98 ) : 2016
2) 2016 . 2016 - 2012 . 2020
Tính
1) ( 1998 . 1999 - 1998 . 1998 - 1900 - 98 ) : 2016
2) 2015 . 2015 - 2013 . 2017
1) (1998.1999 - 1998.1998 - 1900 - 98) : 2016
= [1998.(1999 - 1) - 1998) : 2016
= (1998 - 1998) : 2016
= 0 : 2016
= 0
2) 2015.2015 - 2013.2017
= 20152 - (2015 - 2).(2015 + 2)
= 20152 - (20152 - 22)
= 20152 - 20152 + 4
= 4
tính hợp lí:
a) 1999 * 1998 - 999 - 1000 -1999 *1996
b)2013 *2013 - 2012 *2014
c)99 - 97 + 95 - 93 +......+7- 5 + 3
tính nhanh:
a)(1978*1979+1980*21+1958)chia (1980*1979-1978*1979)
b)1999*19981998-1998*19991999
c) 2016*20162015-2015*20162016
tìm chữ số hàng đơn vị của 1998^1998+2015^2016+2009^2015+3
tính tổng:
a) 1+(-2)+3+(-4)+....+2015 - 2016
b) B= 1-2-3+4+5-6-7+8+...+1997-1998-1999+2000
giải chi tiết ra hộ mìk nhé! Làm 1 câu thôi cũng đc! Thanks
\(M=\left(2012^{ }1999\cdot2013-2012^{ }1999\right):\left(2012^{ }1998\cdot2012\right)\)
Tính nhanh:
( 1999 x 1998 + 1998 x 1997 ) x ( 1 + 1/2 : 1 1/2 - 1 1/3)
\(=\left(1999\times1998+1998\times1997\right)\times\left(1+\dfrac{1}{2}:1\dfrac{1}{2}-1\dfrac{1}{3}\right)\)
\(=\left(1999\times1998+1998\times1997\right)\times\left(1+\dfrac{1}{2}:\dfrac{3}{2}-\dfrac{4}{3}\right)\)
\(=\left(1999\times1998+1998\times1997\right)\times\left(1+\dfrac{1}{3}-\dfrac{4}{3}\right)\)
\(=\left(1999\times1998+1998\times1997\right)\times\left(\dfrac{4}{3}-\dfrac{4}{3}\right)\)
\(=\left(1999\times1998+1998\times1997\right)\times0\)
\(=0\)
a ( 1+2+3+....+100) * (1^2+ 2^2 + 3^3+....+100^2) * ( 65. 111- 13. 15. 37)
b 1999. 1999. 1998- 1998. 1998. 1999
\(\left(1+2+3+...+100\right).\left(1^2+2^2+3^3+...+100^2\right).\left(65.111-13.15.37\right)\)
\(=\left(1+2+3+...+100\right).\left(1^2+2^2+3^3+...+100^2\right).\left(7215-7215\right)\)
\(=\left(1+2+3+...+100\right).\left(1^2+2^2+3^3+...+100^2\right).0\)
\(=0\)
\(1999.1999.1998-1998.1998.1999\)
\(=1999.1998.\left(1999-1998\right)\)
\(=1999.1998.1\)
Tham khảo nhé~
bn oi viet cach lm ra giup mk voi
Tính giá trị mỗi biểu thức sau
b. (1999 x 1998 + 1998 + 1997) x (1 + 1 2 : 1 1 2 - 1 1 3 )