CMR: 4n+15n-1⋮9 (n∈N)
CMR n nguyên dương:
a) \(2^{8n}.5^{6n}-1980^n-441^n+1⋮1979\)
b) \(4n^3-6n^2+3n+37\)\(⋮̸\)\(125\)
c) \(4^n+15n-1⋮9\)
CMR: 4n + 15n - 1 chia hết cho 9
Chứng minh rằng với n ∈ N * : 4 n + 15 n – 1 chia hết cho 9
4n + 15n – 1 chia hết cho 9
Đặt An = 4n + 15n – 1
với n = 1 ⇒ A1 = 4 + 15 – 1 = 18 chia hết 9
+ giả sử đúng với n = k ≥ 1 nghĩa là:
Ak = (4k + 15k – 1) chia hết 9 (giả thiết quy nạp)
Ta cần chứng minh: Ak + 1 chia hết 9
Thật vậy, ta có:
Ak + 1 = 4k+1 + 15(k + 1) – 1
= 4.4k + 15k + 15 – 1
= 4.(4k + 15k – 1) – 45k+ 4+ 15 – 1
= 4.(4k +15k- 1) – 45k + 18
= 4. Ak + (- 45k + 18)
Ta có: Ak⋮ 9 và ( - 45k+ 18) = 9(- 5k + 2)⋮ 9
Nên Ak + 1 ⋮ 9
Vậy 4n + 15n – 1 chia hết cho 9 ∀n ∈ N*
chứng minh:4n 15n-10 chia hết cho 9 với n thuộc N
Sử Dụng phương pháp qui nạp để giải:
1)CMR:9^2n+14 chia hết cho 5.
2)CMR:16^n-15n-1 chia hết cho 225.
3)CMR:4^n+15n-1 chia hết cho 9.
4)CMR:1+2+...+n=n(n+1)/2
5)CMR:11^n+1+12^2n-1 chia hêts cho 133
Ai xong nhanh nhất , chi tiết nhất tự biết rồi đấy!
Mình sẽ tích cho
CMR với n là số nguyên thì các P/S SAU LÀ p/s tối giản
1) \(\frac{n+5}{n+6}\)
2)\(\frac{3n+5}{4n+7}\)
3)\(\frac{15n-7}{9-20n}\)
Ai làm nhanh và đúng mk tick^^
1) Vì ƯCLN ( n + 5 ; n + 6 ) = 1
2) Gọi ƯCLN ( 3n + 5 ; 4n + 7 ) là d
=> ( 3n + 5 ) \(⋮\)d
( 4n + 7 ) \(⋮\)d
=> 4(3n + 5 ) \(⋮\)d
3 ( 4n + 7 ) \(⋮\)d
=> 12n + 20 \(⋮\)d
12n + 21 \(⋮\)d
=> d = 1
=>3n+5/4n+7 là phân số tối giản
câu 3 làm tương tự câu 2
#๖ۣۜβσʂʂ彡
Bổ sung câu 1 của Thiên Ân :
Để \(\frac{n+5}{n+6}\)là phân số tối giản
=> ƯCLN ( n + 5 ; n + 6 ) = 1
Gọi ƯCLN ( n + 5 ; n + 6 ) = d
=> n + 5 \(⋮\)d và n + 6 \(⋮\)d ( 1 )
Từ 1
=> ( n + 6 ) - ( n + 5 ) \(⋮\)d
=> 1 \(⋮\)d
=> d \(\in\)Ư ( 1 )
=> d = 1
=> \(\frac{n+5}{n+6}\)là phân số tối giản => đpcm
CMR: A= 7n + 3n-1 chia hết cho 9 (với mọi n thuộc N)
CMR: B= 4n + 15n-1 chia hết cho 9 (với mọi n thuộc N*)
CMR: Với mọi số n lẻ thì: 4n + 15n - 1 chia hết cho 9.
Câu hỏi này là câu hỏi nâng cao nên rất khó
=>Nên hỏi dạy bộ môn Toán
Tìm số nguyên n biết 15n-4n chia hết cho n
15n-4n=11n chia hết cho n mà n là số nguyên nên để 11n chia hết cho n thì n thuộc Z
ta có: 15n-4n chia hết cho n
=> n.(15-4) chia hết cho n
=> n.9 chia hết cho n
mà n.9 chia hết cho n
=> n thuộc Z