Chứng tỏ
(2^n+1)(2^n+2) chia hết cho 3 với n thuộc N
1) Chứng tỏ rằng :(17^n+1)(17^n+2)chia hết cho 3 với mỗi n thuộc N
2)Chứng tỏ rằng : (9^m+9)(9^m+2)chia hết cho 5 với mỗi m thuộc N
a) Chứng tỏ (17^n+2).(17^n+1) chia hết cho 3 với mọi n thuộc N
b) Chứng tỏ (9^m+1)(9^m+2)(9^m+3)(9^m+4) chia hết cho 5 với n thuộc N
1.cho A=n2+n+6. chứng tỏ A chia hết cho 5 với mọi n thuộc N
2.chứng tỏ với mọi n thuộc N thì (2x+1+2x+2+......+2x+40) chia hết cho 30
1 Chứng tỏ rằng:
a)(n^2+n) chia hết cho 2 (với mọi n thuộc z)
b) (n^2+n+3) ko chia hết cho 2(với mọi n thuộc z)
2)Cho x;y thuộc z .Chứng minh rằng (5x+47y) chia hết cho 17 khi và chỉ khi (x+6y) chia hết cho 17
Help Me!
a) (n mũ 2+n) chia hết cho 2
=> n mũ 2 +n thuộc Ư(2), tự tìm ước của 2
\(n^2+n=n\left(n+1\right)\)
Vì n(n+1) là tích 2 số nguyên liên tiếp nên chia hết cho 2 => đpcm
\(n^2+n+3=n\left(n+1\right)+3\)
Vì n(n+1) chia hết cho 2 => số cuối là số chẵn => n(n+1) + 3 có số cuối là số lẻ
Vậy n^2+n+3 ko chia hết cho 2
1) a, Chứng tỏ ràng :với mọi số tự nhiên n thuộc N thì n^2+n+1 chia hết cho 5
b,Chứng tỏ ràng :số a=9^11+1chia hết cho 2 và 5
c,Chứng tỏ ràng :tích n nhân (n+3)là số chãn với mọi n thuộc N
1:Từ 1 đến 100 có bao nhiêu số chia hết cho 2 , bao nhiêu số chia hết cho 5 ?
2:Chứng tỏ rằng với mọi số tự nhiên n thì tích ( n + 3 ) . ( n + 6 ) chia hết cho 2 ?
3:Chứng tỏ gọi rằng với mọi stn n thì tích n . ( n + 5 ) chia hết cho 2 ?
4: Gọi A = n2 + n + 1 . ( n e N ) ( nghĩa là n thuộc stn bất kì )
Giúp với nha !!!!!
Bài 1
Số các số chia hết chia hết cho 2 là
(100-2):2+1=50 ( số )
Số các số chia hết cho 5 là
(100-5):5+1=20 ( số)
Bài 2: Với n lẻ thì n+3 chẵn => Cả tích chia hết cho 2
Với n chẵn thì n+6 hcawnx => Cả tích chia hết cho 2
Bài 3: Xét 2 trường hợp n chẵn, lẻ như bài 2
Bài 4 bạn ghi thiếu đề
1:Từ 1 đến 100 có bao nhiêu số chia hết cho 2 , bao nhiêu số chia hết cho 5 ?
2:Chứng tỏ rằng với mọi số tự nhiên n thì tích ( n + 3 ) . ( n + 6 ) chia hết cho 2 ?
3:Chứng tỏ gọi rằng với mọi stn n thì tích n . ( n + 5 ) chia hết cho 2 ?
4: Gọi A = n2 + n + 1 . ( n e N ) ( nghĩa là n thuộc stn bất kì )
Bài 1
Số các số chia hết chia hết cho 2 là
(100-2):2+1=50 ( số )
Số các số chia hết cho 5 là
(100-5):5+1=20 ( số)
chứng tỏ: ( 2n + 1) . ( 2n + 2) chia hết cho 3 với n thuộc N
chứng tỏ: ( 2n + 1) . ( 2n + 2) chia hết cho 3 với n thuộc N
Chứng tỏ rằng (2n + 1) (2n+2) chia hết cho 3 với mọi n thuộc N
TH1: n là số lẻ thì \(2^n\)+1 chia hết cho 3 =>(\(2^n\)+1) (\(2^n\)+2) chia hết cho 3 TH2: n là so chẵn thì \(2^n\)+2 chia hết cho 3 =>(\(2^n\)+1) (\(2^n\)+2) chia hết cho 3 Vậy với mọi n thuộc N thì (2n + 1) (2n+2) chia hết cho 3