Câu 1:Giúp mk nha
Tìm x bt:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) và x+y+z=81
Tìm x, y, z biết:
a) \(\frac{x}{5}=\frac{y}{6},\frac{y}{8}=\frac{z}{7}\)và x+y-z=69
b) 2x=3y, 5y=72 và 3x+5y-7z=30
c)\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\)và 5z-3x-4y=50
Ai bt câu nào thì giúp mk nha, mk tick, cảm ơn m pạn trước nhé!
a )
Ta có :
\(\hept{\begin{cases}\frac{x}{5}=\frac{y}{6}\\\frac{y}{8}=\frac{z}{7}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{20}=\frac{y}{24}\\\frac{y}{24}=\frac{z}{21}\end{cases}}}\)
và \(x+y-z=69\)
ADTCDTSBN , ta có :
\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{20}=3\\\frac{y}{24}=3\\\frac{z}{21}=3\end{cases}\Rightarrow\hept{\begin{cases}x=3.20=60\\y=3.24=72\\z=3.21=63\end{cases}}}\)
Vậy ...
b )
Ta có :
\(5y=72\Rightarrow y=\frac{72}{5}=14,4\)
\(\Rightarrow x=14,4.3:2=21,6\)
và \(3x+5y-7z=30\)
Thay vào làm tiếp :
c )
\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\)
\(=\frac{3\left(x-1\right)}{6}=\frac{4\left(y+3\right)}{16}=\frac{5\left(z-5\right)}{30}\)
\(=\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}\)
\(=\frac{5z-25-\left(3x-3\right)-\left(4y+12\right)}{30-6-16}\)( ADTCDTSBN )
\(=\frac{5z-25-3x+3-4y-12}{8}=\frac{5z-3x-4y-34}{8}\)
\(=\frac{50-34}{8}=\frac{16}{8}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x-1}{2}=2\\\frac{y+3}{4}=2\\\frac{z-5}{6}=2\end{cases}\Rightarrow\hept{\begin{cases}x-1=2.2=4\\y+3=2.4=8\\z-5=2.6=12\end{cases}\Rightarrow}\hept{\begin{cases}x=5\\y=5\\z=17\end{cases}}}\)
Vậy ...
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
tìm x,y,z
a) 4x=5y và 3x-2y=35
b) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và x+y+z= -90
c) x:y:z=3:5:(-2) và 5x-y+3z=124
d) \(\frac{x-4}{3}=\frac{y-6}{3}=\frac{z-8}{4}\)và x+y+z=27
e) \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)và 4x-3y+2z=36 Giúp mk vs mk đang cần gấp, trc 20h tối nay nhé , mk sẽ tik thật nhiều
Tìm x,y,z biết:
a,\(\frac{3}{x-1}\)=\(\frac{4}{y-2}\)=\(\frac{5}{z-3}\) và x+y+z=18
b,\(\frac{x-y}{2}\)=\(\frac{x+y}{12}\)=\(\frac{xy}{200}\)
c,\(\frac{x+y+2004}{z}\)=\(\frac{y+z-2005}{x}\)=\(\frac{z+x+1}{y}\)=\(\frac{2}{x+y+z}\)
d,\(\frac{x+4}{7}\)=\(\frac{4y-1}{9}\)=\(\frac{4y-x-5}{x}\)
Các bạn cố gắng giúp mk nha, mk đang cần lun,ai lm dc câu nào thì lm nhưng cố giúp mk hết
Tớ làm lần lượt nhé.
Ta có:\(\frac{3}{x-1}=\frac{4}{y-2}=\frac{5}{z-3}\)
\(\Rightarrow\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau,ta được:
\(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}=\frac{\left(x-1\right)+\left(y-2\right)+\left(z-3\right)}{3+4+5}=\frac{\left(x+y+z\right)-\left(1+2+3\right)}{12}=\frac{18-6}{12}=1\)
\(\Rightarrow\frac{x-1}{3}=1\Rightarrow x=4\)
\(\frac{y-2}{4}=1\Rightarrow y=6\)
\(\frac{z-3}{5}=1\Rightarrow z=3\)
\(\frac{x-y}{2}=\frac{x+y}{12}=\frac{xy}{200}=\frac{x-y+x+y}{2+12}=\frac{2x}{14}=\frac{x}{7}=k\)
\(\Rightarrow x=7k\left(1\right);x+y=12k\left(2\right);xy=200k\left(3\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow y=12k-7k=5k\)
\(\Rightarrow xy=5k\cdot7k=35k^2\left(4\right)\)
Từ \(\left(3\right);\left(4\right)\Rightarrow200k=35k^2\Leftrightarrow200=35k\Leftrightarrow k=\frac{200}{35}\)
\(\Rightarrow x=7\cdot\frac{200}{35}=40\)
\(y=5\cdot\frac{200}{35}=\frac{1000}{35}\)
P/S:số khá xấu.sợ sai.nhưng cách làm là như vậy.
Dễ thấy \(x+y+z\ne0\)
\(\Rightarrow\frac{x+y+2004}{z}=\frac{y+z-2005}{x}=\frac{z+x+1}{y}=\frac{\left(x+y+2004\right)+\left(y+z-2005\right)+\left(z+x+1\right)}{z+x+y}\)
\(=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\Rightarrow x+y+z=0,5\)
\(\Rightarrow\hept{\begin{cases}x+y=0,5-z\\y+z=0,5-x\\z+z=0,5-y\end{cases}}\)
Thay vào đề bài,ta được:
\(\frac{0,5-z+2004}{z}=\frac{0,5-x-2005}{x}=\frac{0,5-y+1}{y}=2\)
\(\Rightarrow\frac{2004,5-z}{z}=\frac{-2004,5-x}{x}=\frac{1,5-y}{y}=2\)
\(\frac{2004,5-z}{z}=2\)
\(\Rightarrow2004,5=3z\)
\(\Rightarrow z=\frac{2004,5}{3}\)
Tương tự như thế mak tìm nhé.
Cho x ; y ; z là các số thực dương thỏa mãn x + y + z =xyz
Chứng minh rằng : \(\frac{1+\sqrt{1+x^2}}{x}+\frac{1+\sqrt{1+y^2}}{y}+\frac{1-\sqrt{1+z^2}}{z}\le\)xyz
Huhuu giúp mk với !!! Ai bt ko giúp mk điii
Á nhầm nhaaa cái cuối cùng là cộng z2 đó
Ta có :
\(\frac{1+\sqrt{1+x^2}}{x}=\frac{2+\sqrt{4\left(1+x^2\right)}}{2x}\le\frac{2+\frac{4+1+x^2}{2}}{2x}=\frac{9+x^2}{4x}\)
tương tự : \(\frac{1+\sqrt{1+y^2}}{y}\le\frac{9+y^2}{4y}\); \(\frac{1+\sqrt{1+z^2}}{z}\le\frac{9+z^2}{4z}\)
\(\Rightarrow\frac{1+\sqrt{1+x^2}}{x}+\frac{1+\sqrt{1+y^2}}{y}+\frac{1+\sqrt{1+z^2}}{z}\le\frac{\left(9+x^2\right)yz+\left(9+y^2\right)xz+\left(9+z^2\right)xy}{4xyz}\)
\(=\frac{9\left(xy+yz+xz\right)+xyz\left(x+y+z\right)}{4xyz}\le\frac{9\frac{\left(x+y+z\right)^2}{3}+\left(xyz\right)^2}{4xyz}=\frac{4\left(xyz\right)^2}{4xyz}=xyz\)
Dấu " = " xảy ra khi x = y = z = \(\sqrt{3}\)
Ta có: \(\frac{1+\sqrt{1+x^2}}{x}=\frac{1+\sqrt{1\times\left(1+x^2\right)}}{x}\le\frac{1+\frac{1+1+x^2}{2}}{x}=\frac{2+\frac{x^2}{2}}{x}=\frac{2}{x}+\frac{x}{2}\)(Áp dụng bđt Cauchy ở chỗ \(\sqrt{1\times\left(1+x^2\right)}\)
Tương tự với b,c . Ta được VT\(\le\)\(\frac{x}{2}+\frac{y}{2}+\frac{z}{2}+\frac{2}{x}+\frac{2}{y}+\frac{2}{z}\)
\(\le\)\(\frac{x+y+z}{2}\)+ \(\frac{2xy+2yz+2xz}{xyz}\)= \(\frac{x+y+z}{2}\)+ \(\frac{4xy+4yz+4xz}{2xyz}\)= \(\frac{xyz}{2}+\frac{4xy+4yz+4xz}{2xyz}\)
Ta chứng minh được \(4xy+4yz+4xz\le\left(x+y+z\right)^2\)bằng phương pháp biến đổi tương đương
=> VT \(\le\)\(\frac{xyz}{2}+\frac{\left(x+y+z\right)^2}{2xyz}=\frac{xyz}{2}+\frac{\left(xyz\right)^2}{2xyz}=\frac{xyz}{2}+\frac{xyz}{2}=xyz\)(Điều phải cm)
Dấu = xảy ra <=>
1.Tìm x;y;z biết :\(\frac{x}{3}=\frac{y}{4},\frac{y}{3}=\frac{z}{5}\)và 2x -3y +z=6
2.Tìm 2 số x,y bt rằng :\(\frac{x}{2}=\frac{y}{5}\)và x.y =40
Bài 1: \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}\)
=>\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2z}{18}=\frac{3y}{36}\)
Áp dụng tính chất của dãy tỉ số bằng nhau: \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2z}{18}=\frac{3y}{36}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
=>x=27;z=36;z=60
Bài 2: \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=5k\end{cases}}\Rightarrow xy=2k.5k=10k^2=40\Rightarrow k^2=4\Rightarrow\hept{\begin{cases}k=-2\\k=2\end{cases}}\)
+)k=-2 => x=-4;y=-5
+)k=2 => x=4;y=5
Vậy x=-4;y=-5 hoặc x=4;y=5
Bài 1 : Tìm x, y, z biết :
a, x/15 = y/20 = z/28 và 2x + 3y - z = 186 ( giải bằng 3 cách )
b, x/2 +y/3 + z/4 và x2 + y2 + z2 = 116 ( giải bằng 3 cách )
c, \(\frac{x+y}{5}\)+ \(\frac{x-y}{8}\)+ \(\frac{x.y}{26}\)
d, \(\frac{y+z+1}{x}\) = \(\frac{x+z+2}{y}\)=\(\frac{x+y-3}{z}\)= \(\frac{1}{x+y+z}\)
e,(x+y):(5-z):(y+z):(9+y)=3:1:2:5
f, \(\frac{2x+1}{5}\)= \(\frac{4y-5}{9}\)= \(\frac{2x+4y-4}{7x}\)
MONG CÁC BN GIÚP ĐỠ MÌNH VÌ MÌNH ĐAG CẦN GẤP MÀ BT KHÓ QUÁ MONG CÁC BN GIÚP ĐỠ HẾT SỨC Ạ , THANKS CÁC BN NHIỀU
MK SẼ TICK CHO TẤT CẢ CÁC BN GIÚP ĐỠ MK KỂ CẢ CÁC BN LM SAI , MONG CÁC BN GIÚP MK HOÀN THÀNH NHANH BÀI TẬP
HẠN CUỐI 4H30P CHIỀU NAY NHÉ
bn ơi,vì tất cả bài tập này khá nhiều và cx khá khó nên sẽ ko ai trả lời đâu,bn nên đăng từng bài một thôi nhé,nếu bn đăng như mk nói thì mà ko có ai trả lời thì hãy viết bài toán đó trên google để tra nhé,chúc bn làm bài tốt
BT: Tìm x, y, z biết:
a) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và x + 2y - z = 8
b) 2x = 4y =5z và x - y + 2z = 40
c) \(\frac{x}{2}=\frac{4}{5};\frac{y}{3}=\frac{z}{7}\)và x + y - z = 25
d) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và x.y.z = -30
e) \(\frac{x-2}{3}=\frac{5y+7}{2}=\frac{2x-5y-11}{2x}\)
f) \(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y+1}=x+y+z\)
g) \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)và 2x = -3y = 42
Bạn nào giúp mik >.< !!!
Mik đg cần gấp quá >.<" !!
Cám ơn nha ^.^' !
a) Áp dụng tính chất ..., ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+2y-z}{2+6-4}=\frac{8}{4}=2\)
\(\Rightarrow x=4;y=6;z=8\)
b)2x = 4y \(\Rightarrow\frac{x}{4}=\frac{y}{2}\)\(\Rightarrow\frac{x}{20}=\frac{y}{10}\)( 1 )
4y =5z \(\Rightarrow\frac{y}{5}=\frac{z}{4}\)\(\Rightarrow\frac{y}{10}=\frac{z}{8}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{20}=\frac{y}{10}=\frac{z}{8}\)
Áp dụng tính chất ..., ta có :
\(\frac{x}{20}=\frac{y}{10}=\frac{z}{8}=\frac{x-y+2z}{20-10+16}=\frac{40}{26}=\frac{20}{13}\)
\(\Rightarrow x=\frac{400}{13};y=\frac{200}{13};z=\frac{160}{13}\)
còn lại tương tự
1.tìm các số x,y,z biết
a)\(\frac{x}{y}=\frac{7}{13}\)và x+y=60 b)\(\frac{x}{y}=\frac{y}{10}=\frac{z}{6}và\) x+y+z=92
c)\(\frac{x}{y}=\frac{9}{10}và\) y-x=120 d)\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}và\) x+y+z=81
e)\(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}và\) y-x=4 f)\(\frac{x}{3}=\frac{y}{4}và\) 2x+5y=10
1)
a) Ta có: \(\frac{x}{y}=\frac{7}{13}\).
=> \(\frac{x}{7}=\frac{y}{13}\) và \(x+y=60.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{60}{20}=3.\)
\(\left\{{}\begin{matrix}\frac{x}{7}=3=>x=3.7=21\\\frac{y}{13}=3=>y=3.13=39\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(21;39\right).\)
c) Ta có: \(\frac{x}{y}=\frac{9}{10}.\)
=> \(\frac{x}{9}=\frac{y}{10}\) và \(y-x=120.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{9}=\frac{y}{10}=\frac{y-x}{10-9}=\frac{120}{1}=120.\)
\(\left\{{}\begin{matrix}\frac{x}{9}=120=>x=120.9=1080\\\frac{y}{10}=120=>y=120.10=1200\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(1080;1200\right).\)
d) Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}.\)
=> \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) và \(x+y+z=81.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{81}{9}=9.\)
\(\left\{{}\begin{matrix}\frac{x}{2}=9=>x=9.2=18\\\frac{y}{3}=9=>y=9.3=27\\\frac{z}{4}=9=>z=9.4=36\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(18;27;36\right).\)
Mình chỉ làm 3 câu thôi nhé, dài quá bạn.
Chúc bạn học tốt!
Tính tỉ lệ thức bằng cách tìm x,y,z
a. 3(x-1)=2(y-2) ; 4(y-2)=3(z-3) và 2x+3y-z= 50
b.\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}và-x-y-z=-49\)
c.\(\frac{x}{y}=\frac{3}{2};\frac{y}{z}=\frac{5}{7}và\left|2x-3y+5z\right|=1\)
d.\(\frac{1+4y}{13}=\frac{1+6y}{19}=\frac{1+8y}{5x}\)
Mấy bn lm ơn jup mk nka, mk cần gấp ik. Lm đc câu nào thì làm nk
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{2\cdot2+3\cdot3-4}=5\)
Do đó: x-1=10; y-2=15; z-3=20
=>x=11; y=17; z=23
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Do đó: x=18; y=16; z=15
c: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{2}\\\dfrac{y}{5}=\dfrac{z}{7}\end{matrix}\right.\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}\)
Trường hợp 1: 2x-3y+5z=-1
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}=\dfrac{2x-3y+5z}{2\cdot15-3\cdot10+5\cdot14}=\dfrac{-1}{70}\)
Do đó: x=-15/70=-3/14; y=-10/70=-1/7; z=-14/70=-1/5
Trường hợp 2: 2x-3y+5z=1
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}=\dfrac{2x-3y+5z}{2\cdot15-3\cdot10+5\cdot14}=\dfrac{1}{70}\)
Do đó: x=15/70=3/14; y=1/7; z=1/5