Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hoàng Ngọc Hân
Xem chi tiết
Bên nhau trọn đời
Xem chi tiết
Do boys like to sleep an...
Xem chi tiết
chim cánh cụt
Xem chi tiết
Thao Nhi Nguyen
Xem chi tiết
Thảo Vi
Xem chi tiết
Hà Trí Kiên
Xem chi tiết

(\(x-3\))+ (2y - 1)2 = 0

          (\(x\) - 3)2 ≥ 0 ∀ \(x\)

        (2y - 1)2 ≥ 0 ∀ y

⇔ (\(x\) - 3)2 + (2y - 1)2= 0

⇔ \(\left\{{}\begin{matrix}x-3=0\\3y-1=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{3}\end{matrix}\right.\)

(4\(x-3\))4 + (y + 2)2 ≤ 0

(4\(x\) - 3)4 ≥ 0 ∀ \(x\)

(y + 2)2 ≥ 0 ∀ y

⇔(4\(x\) - 3)4   + (y+2)2 ≥ 0

⇔ (4\(x\) - 3)4 + (y + 2)2 ≤ 0 ⇔

\(\left\{{}\begin{matrix}4x-3=0\\y+2=0\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}x=\dfrac{3}{4}\\y=-2\end{matrix}\right.\)

 

 

 

Lê Tuệ Tâm Như
Xem chi tiết
Sherlockichi Kazukosho
16 tháng 8 2016 lúc 8:45

Để ( x + 1)( x - 1) < 0 

Thì 1 trong 2 số phải bé hơn 0

=> có 2 trường hợp 

\(\left(1\right)\hept{\begin{cases}x+1< 0\\x-1>0\end{cases}\Rightarrow\hept{\begin{cases}x< -1\\x>1\end{cases}\Rightarrow}-1< x< 1}\)

\(\left(2\right)\hept{\begin{cases}x+1>0\\x-1< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-1\\x< 1\end{cases}\Rightarrow}x\in O}\)

Để (x + 1)(x - 1) = 0

=> \(\hept{\begin{cases}x+1=0\\x-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\x=1\end{cases}}}\)

ANH HOÀNG
Xem chi tiết
Lấp La Lấp Lánh
15 tháng 9 2021 lúc 12:13

a) \(x^2+\left(y-\dfrac{1}{10}\right)^4=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y-\dfrac{1}{10}=0\end{matrix}\right.\)( do \(x^2\ge0,\left(y-\dfrac{1}{10}\right)^4\ge0\))

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\)

b) \(\left(\dfrac{1}{2}.x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\le0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x-5=0\\y^2-\dfrac{1}{4}=0\end{matrix}\right.\)( do \(\left(\dfrac{1}{2}x-5\right)^{20}\ge0,\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\))

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x=5\\y^2=\dfrac{1}{4}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=\pm\dfrac{1}{2}\end{matrix}\right.\)

Nguyễn Hoàng Minh
15 tháng 9 2021 lúc 12:14

\(a,\Leftrightarrow\left\{{}\begin{matrix}x=0\\y-\dfrac{1}{10}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\\ b,\left\{{}\begin{matrix}\left(\dfrac{1}{2}x-5\right)^{20}\ge0\\\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\end{matrix}\right.\Leftrightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\)

Mà \(\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\le0\)

\(\Leftrightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}=0\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x=5\\y^2=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=\pm\dfrac{1}{2}\end{matrix}\right.\)

👁💧👄💧👁
15 tháng 9 2021 lúc 12:15

a) \(x^2+\left(y-\dfrac{1}{10}\right)^4=0\)

Mà \(x^2+\left(y-\dfrac{1}{10}\right)^4\ge0\forall x;y\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=0\\\left(y-\dfrac{1}{10}\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(0;\dfrac{1}{10}\right)\)

b) \(\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\le0\)

Mà \(\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\forall x;y\)

\(\Rightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}\left(\dfrac{1}{2}x-5\right)^{20}=0\\\left(y^2-\dfrac{1}{4}\right)^{10}=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=10\\\left[{}\begin{matrix}y=\dfrac{1}{2}\\y=-\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)

Vậy \(\left(x;y\right)\in\left\{\left(10;\dfrac{1}{2}\right);\left(10;-\dfrac{1}{2}\right)\right\}\)