Giá trị của:
f.(-2) với y = f(x) = 2.x +5Cho hàm số y = f(x) xác định bởi công thức : y = f(x) =\(\dfrac{2}{3}\)x+6
Tính các giá trị của x tương ứng với giá trị của y = 5, y = –4
y=5
=>2/3x=-1
hay x=-3/2
y=-4
=>2/3x=-10
hay x=-15
hàm số y=f(x) được cho bởi công thức y=3^2-7
a/ Tính f(-1); f(0); f(1/5); f(5)
b/ Tìm các giá trị của x tương ứng với các giá trị của y bằng :
-4; 5; 20; -6 và 2/3
Câu 1: Cho hàm số y = 2x\(^2\)
a) Hãy lập bảng tính các giá trị f(-5), f(-3), f(0), f(3), f(5)
b) Tìm x biết f(x) = 8, f(x) = 6 - 4\(\sqrt{2}\)
Câu 2: Cho hàm số y = f(x) = \(\dfrac{1}{3}x^2\)
Tìm các giá trị của x, biết rằng \(y=\dfrac{1}{27}\). Cũng câu hỏi tương tự với y = 5
Câu 1:
a)
\(y=f\left(x\right)=2x^2\) | -5 | -3 | 0 | 3 | 5 |
f(x) | 50 | 18 | 0 | 18 | 50 |
b) Ta có: f(x)=8
\(\Leftrightarrow2x^2=8\)
\(\Leftrightarrow x^2=4\)
hay \(x\in\left\{2;-2\right\}\)
Vậy: Để f(x)=8 thì \(x\in\left\{2;-2\right\}\)
Ta có: \(f\left(x\right)=6-4\sqrt{2}\)
\(\Leftrightarrow2x^2=6-4\sqrt{2}\)
\(\Leftrightarrow x^2=3-2\sqrt{2}\)
\(\Leftrightarrow x=\sqrt{3-2\sqrt{2}}\)
hay \(x=\sqrt{2}-1\)
Vậy: Để \(f\left(x\right)=6-4\sqrt{2}\) thì \(x=\sqrt{2}-1\)
Cho hàm số y=f(x)=2/3x+5 a)Tính f(0); f(-3) b)tìm giá trị x tương ứng y=6
Giúp mình với :))))
Cho hàm số y=f(x)=-x+2/3
a,tính f(0),f(2)
b,tìm giá trị của x với y =5/3
cho x=f(x)=2/3*x+5 giải giúp mik với
a) tính f(0);f(-3)
b) Tìm giá trị của x ứng với y=6
a: f(0)=5
f(-3)=3
b: y=6
=>2/3*x=1
hay x=3/2
cho x=f(x)=2/3*x+5 giải giúp mik với
a) tính f(0);f(-3)
b) Tìm giá trị của x ứng với y=6
cho hàm số f(x)=3x^2-7
a, tính f(-1),f(0),f(1/5),f(5)
b, tìm các giá trị của x tương ứng với các giá trị của y lần lượt bằng -4, 5, 20
Cho hàm số \(y=f\left(x\right)=x^2+6x+5\). Gọi \(m,M\) lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của hàm số \(y=f\left(f\left(x\right)\right)\) với \(x\in\left[-3;0\right]\). Tính tổng \(S=m+M.\)
Ta có:
Khi \(x\in\left[-3;0\right]\) thì \(f\left(x\right)\in\left[-4;5\right]\) (dùng BBT)
Lại có:
\(y=f\left(f\left(x\right)\right)=f^2\left(x\right)+6f\left(x\right)+5\)
Khi \(f\left(x\right)\in\left[-4;5\right]\) thì \(f\left(f\left(x\right)\right)\in\left[-4;60\right]\) (dùng BBT)
Do đó, \(m=-4\Leftrightarrow f\left(x\right)=-3\Leftrightarrow x=-2\)
và \(M=60\Leftrightarrow f\left(x\right)=5\Leftrightarrow x=0\)
\(\Rightarrow S=m+M=-4+60=56\)