Phân tích đa thức thành nhân tử :
a) (a3 -b3) + (a-b)2
b) (8a3-27b3)-2a(4a2-9b2)
Phân tích đa thức sau thành nhân tử:
d ) ( 8 a 3 – 27 b 3 ) – 2 a ( 4 a 2 – 9 b 2 )
d) (8a3 – 27b3) – 2a(4a2 – 9b2)
= (2a – 3b)(4a2 + 6ab + 9b2) – 2a(2a – 3b)(2a + 3b)
= (2a – 3b)(4a2 + 6ab + 9b2 – 4a2 – 6ab) = 9b2(2a – 3b)
Bài 1:Phân tích đa thức thành nhân tử
a)x4+2x2y+y2
b)(2a+b)2-(2b+a)2
c) 8a2-27b2-2a(4a2-9b2)
`a)x^4+2x^2y+y^2`
`=(x^2+y)^2`
`b)(2a+b)^2-(2b+a)^2`
`=(2a+b-2b-a)(2a+b+2b+a)`
`=(a-b)(3a+3b)`
`=3(a-b)(a+b)`
`c)8a^3-27b^3-2a(4a^2-9b^2)`
`=(2a-3b)(4a^2+6ab+9b^2)-2a(2a-3b)(2a+3b)`
`=(2a-3b)(4a^2+6ab+9b^2-3a^2-6ab)`
`=9b^2(2a-3b)`
a) Ta có: \(x^4+2x^2y+y^2\)
\(=\left(x^2\right)^2+2\cdot x^2\cdot y+y^2\)
\(=\left(x^2+y\right)^2\)
b) Ta có: \(\left(2a+b\right)^2-\left(2b+a\right)^2\)
\(=\left(2a+b-2b-a\right)\left(2a+b+2b+a\right)\)
\(=\left(a-b\right)\left(3a+3b\right)\)
\(=3\left(a+b\right)\left(a-b\right)\)
Phân tích các đa thức sau thành nhân tử:
a) 8 a 3 - 36 a 2 b + 54 ab 2 - 27 b 3 ;
b) 8 x 3 + 12 x 2 y + 6 xy 2 + y 3 - z 3 .
a) Áp dụng HĐT 5 thu được ( 2 a - 3 b ) 3 .
b) Ta có 8 x 3 + 12 x 2 y + 6 xy 2 + y 3 = ( 2 x + y ) 3 .
Áp dụng HĐT 7 với A = 2x + y; B = z
( 2 x + y ) 3 - z 3 = (2x + y - z)(4 x 2 + y 2 + z 2 + 4xy + 2xz + zy).
Phân tích đa thức sau thành nhân tử:
c ) a 3 – b 3 + 2 b – 2 a
c) a3 – b3 + 2b – 2a = (a – b)(a2 + ab + b2) – 2(a – b)
=(a – b)( a2 + ab + b2 – 2)
Phân tích đa thức thành nhân tử:
a) 5ab-45a3b
b) 3a-6ab+5-10b
c) a2-7ab-2a+14b
d) 4a2-8b+4a-8ab
e) a2-5a+15b-9b2
a,\(5ab-45a^3b\)
=\(5ab\left(1-9a^2\right)\)
=\(5ab\left(1-3a\right)\left(1+3a\right)\)
b,\(3a-6ab+5-10b\)
=\(\left(3a-6ab\right)+\left(5-10b\right)\)
=\(3a\left(1-2b\right)+5\left(1-2b\right)\)
=\(\left(1-2b\right)\left(3a+5\right)\)
c,\(a^2-7ab-2a+14b\)
=\(\left(a^2-7ab\right)-\left(2a-14b\right)\)
=\(a\left(a-7b\right)-2\left(a-7b\right)\)
=\(\left(a-7b\right)\left(a-2\right)\)
d,\(4a^2-8b+4a-8ab\)
=\(\left(4a^2-8ab\right)+\left(4a-8b\right)\)
=\(4a\left(a-2b\right)+4\left(a-2b\right)\)
=\(\left(a-2b\right)\left(4a+4\right)\)
=\(4\left(a-2b\right)\left(a+1\right)\)
e,\(a^2-5a+15b-9b^2\)
=\(\left(a^2-9b^2\right)-\left(5a-15b\right)\)
=\(\left(a-3b\right)\left(a+3b\right)-5\left(a-3b\right)\)
=\(\left(a-3b\right)\left(a+3b-5\right)\)
phân tích đa thức thành nhân tử a(b3-c3)+b(c3-a3)+c(a3-b3)
a(b3 - c3) + b(c3 - a3) + c(a3 - b3)
= a(b3 - c3 ) + b( c3 - b3 + b3 - a3) + c(a3 - b3)
= a(b3 - c3) + b(c3 - b3) + b(b3 - a3) + c(a3 - b3)
= a(b3 - c3) - b(b3 - c3) - [b(a3 - b3) - c(a3- b3)]
= (b3 - c3)(a - b) - (a3- b3)(b - c)
= (b - c)(b2 + bc + c2)(a - b) - (a - b)(a2 + ab + b2)(b - c)
= (b - c)(a - b)(b2 + bc + c2 - a2 + ab - b2)
= (b - c)(a - b) [ (c2 - a2) + (bc - ab) ]
= (b - c)(a - b) [ (c - a)(c + a) + b(c - a) ]
= (b - c)(a -b) [ (c - a)(c + a + b) ]
= (a- b)(b - c)(c - a)(a + b + c)
Phân tích đa thức thành nhân tử:
a) M = ( a + b + c ) 3 - a 3 - b 3 - c 3 ;
b) N = a 3 + b 3 + c 3 - 3abc.
Phân tích đa thức sau thành nhân tử:
b ) 8 a 3 + 4 a 2 b - 2 a b 2 – b 3
b) 8a3 + 4a2b - 2ab2 – b3 = (8a3 – b3 ) + (4a2b - 2ab2 )
= (2a – b)(4a2 + 2ab + b2) + 2ab(2a – b)
= (2a – b)( 4a2 + 2ab + b2 + 2ab) = (2a – b)(2a + b)2
Phân tích đa thức thành nhân tử bằng phương pháp xét giá trị riêng: A= (a+b+c)3-a3-b3-c3
A= (a+b+c)3-a3-b3-c3
= a3+b3+c3+3(a+b)(a+c)(b+c)-a3-b3-c3
= 3(a+b)(a+c)(b+c)
Phân tích đa thức thành nhân tử:
a) a 2 (b-c) + b 2 (c-a) + c 2 (a-b);
b) a 3 (b-c) + b 3 (c-a) + c 3 (a-b).
a) (a-b)(b-c)(a-c).
b) (a-b)(b-c)(a - c)(a + b + c).