Tính dãy quy luật sau:
s6:10/56+10/140+10/28+....................+10/1400
giải giúp mk với
Tính dãy quy luật sau:
s6: \(\frac{10}{56}+\frac{10}{140}+\frac{10}{28}+.........+\frac{10}{1400}\)
Giúp mk vs!
Phân số thứ 3 you viết sai rồi
S6 = 10/56 + 10/140 + 10/260 + ... + 10/1400
2/10.S6 = 1/28 + 1/70 + 1/130 + ... + 1/700
6/10.S6 = 3/4.7 + 3/7.10 + 3/10.13 + ... + 3/25.28
3/5.S6 = 1/4 - 1/7 + 1/7 - 1/10 + 1/10 - 1/13 + ... + 1/25 - 1/28
3/5.S6 = 1/4 - 1/28
3/5.S6 = 7/28 - 1/28 = 3/14
Tự lm típ đc rồi nhé
Tính tổng S = 10/56 + 10/140 + 10/260 +.......+ 10/1400
Giúp mk với
\(S=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+.......+\frac{10}{1400}\)
\(S=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+\frac{5}{700}\)
\(\frac{3S}{5}=\frac{3}{4}\times7+\frac{3}{7}\times10+\frac{30}{10}\times13+........+\frac{3}{25}\times28\)
\(\frac{3S}{5}=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+......+\frac{1}{25}-\frac{1}{28}\)
\(\frac{3S}{5}=\frac{1}{4}-\frac{1}{28}\)
\(\frac{3S}{5}=\frac{3}{14}\)
\(S=\frac{3}{14}\times\frac{5}{3}\)
\(S=\frac{5}{14}\)
Vậy \(S=\frac{5}{14}\)
Tính số hạng thứ 100 của dãy:
1) 5 ; 10 ; 21 ; 32
2) 10 ; 28 ; 54
Nêu quy luật của từng dãy nữa nha
Tính:
C = 5/4 + 5/28 + 5/70 + ....... ( 100 số hạng )
D = 10/56 + 10/140 + 10/260 + ....... + 10/1400 ( cái //// này nghĩa là phần nhé ! )
\(C=\frac{5}{4}+\frac{5}{28}+\frac{5}{70}+...+\frac{5}{297\cdot300}\)
\(C=5\left(\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+...+\frac{1}{297\cdot300}\right)\)
\(C=5\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{297}-\frac{1}{300}\right)\)
\(C=5\left(1-\frac{1}{300}\right)\)
\(C=5\cdot\frac{299}{300}\)
\(C=\frac{299}{60}\)
tính:10/56+10/140+10/260+...+10/140
Tính tổng sau :
\(A=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+.........+\frac{10}{1400}\)
giúp mình với !
tính tổng:
a) A = 1/3 + 1/3^2 + 1/3^3 +........+ 1/3^100
b) B = 10/56 + 10/140 + 10/260 +.....+ 10/1400
mọi người giúp mk vs
ai làm đc 1 trong 2 câu nhanh nhất mk sẽ tk cho
THANKS
\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)
\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\right)\)
\(2A=1-\frac{1}{3^{100}}\)
\(A=\frac{1-\frac{1}{3^{100}}}{2}\)
\(B=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)
\(B=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+...+\frac{5}{700}\)
\(B=\frac{5}{4.7}+\frac{5}{7.10}+\frac{5}{10.13}+...+\frac{5}{25.28}\)
\(3B=\frac{5.3}{4.7}+\frac{5.3}{7.10}+\frac{5.3}{10.13}+...+\frac{5.3}{25.28}\)
\(3B=5\left(\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{25.28}\right)\)
\(3B=5\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{25}-\frac{1}{28}\right)\)
\(3B=5\left(\frac{1}{4}-\frac{1}{28}\right)\)
\(3B=5\cdot\frac{3}{14}=\frac{15}{14}\)
\(B=\frac{15}{14}:3=\frac{5}{14}\)
a) \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)
\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\right)\)
\(2A=1-\frac{1}{3^{100}}\)
\(\Rightarrow A=\frac{1-\frac{1}{3^{100}}}{2}\)
b) \(B=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)
\(B=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+...+\frac{5}{700}\)
\(B=\frac{5}{4.7}+\frac{5}{7.10}+\frac{5}{10.13}+...+\frac{5}{25.28}\)
\(B=\frac{5}{3}.\left(\frac{1}{4}-\frac{1}{7}\right)+\frac{5}{3}.\left(\frac{1}{7}-\frac{1}{10}\right)+\frac{5}{3}.\left(\frac{1}{10}-\frac{1}{13}\right)+...+\frac{5}{3}.\left(\frac{1}{25}-\frac{1}{28}\right)\)
\(B=\frac{5}{3}.\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{25}-\frac{1}{28}\right)\)
\(B=\frac{5}{3}.\left(\frac{1}{4}-\frac{1}{28}\right)\)
\(B=\frac{5}{3}.\frac{3}{14}\)
\(\Rightarrow B=\frac{5}{14}\)
\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)
\(3A-A=1-\frac{1}{3^{100}}\)\(\Rightarrow2A=\left(1-\frac{1}{3^{100}}\right)\Rightarrow A=\frac{1}{2}\times\left(1-\frac{1}{3^{100}}\right)\)
Tính tổng:A=10/56+10/140+10/260+.........+10/1400
\(A=\dfrac{5}{28}+\dfrac{5}{70}+\dfrac{5}{130}+...+\dfrac{5}{700}\)
\(\dfrac{3A}{5}=\dfrac{3}{4.7}+\dfrac{3}{7.10}+\dfrac{3}{10.13}+...+\dfrac{3}{25.28}\)
\(\dfrac{3A}{5}=\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{25}-\dfrac{1}{28}\)
\(\dfrac{3A}{5}=\dfrac{1}{4}-\dfrac{1}{28}=\dfrac{3}{14}\)
⇒ \(A=\dfrac{5}{14}\)
tính: 10/56+10/140+10/260+...+10/1400
bài này bạn chỉ cần tách mẫu ra là làm được thôi