Gỉai pt :
A = \(\left(x-2\right)\left(x+2\right)+4\left(x-2\right)\sqrt{\frac{x+2}{x-2}}=-3\)
Gỉai PT
a) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=3x^2\)
b)\(2\sqrt{2+x-x^2}=1+\frac{1}{x}\)
MONG CÁC BẠN ZẢI NHANH ZÚP
Gỉai phương trinfnh :
A= \(\left(x-2\right)\left(x+2\right)+4\left(x-2\right)\sqrt{\frac{x+2}{x-2}}=-3\)
\(\text{Đ}K:x>2\) hoặc \(x\le-2\)
\(A=\left(x+2\right)\left(x-2\right)+4\left(x-2\right)\sqrt{\frac{x+2}{x-2}}=-3\)
\(A=\left(x^2-4\right)+4.\sqrt{x-2}.\sqrt{x+2}=-3\)
\(A=\left(x^2-4\right)+4\sqrt{x^2-4}=-3\)
\(A=\sqrt{x^2-4}\left(1-4\right)=-3\)
\(A=\sqrt{x^2-4}.\left(-3\right)=-3\)
\(A=\sqrt{x^2-4=1}\)
\(A=x^2-4=1\)
\(A=x^2=5\)
\(A=x=\orbr{\begin{cases}\sqrt{5}\\-\sqrt{5}\end{cases}}\)
Vây \(x=\orbr{\begin{cases}-\sqrt{5}\\\sqrt{5}\end{cases}}\)
giải pt
\(\frac{2\left(x-\sqrt{2}\right)\left(x-\sqrt{3}\right)}{\left(1-\sqrt{2}\right)\left(1-\sqrt{3}\right)}+\frac{3\left(x-1\right)\left(x-\sqrt{3}\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}-\sqrt{3}\right)}+\frac{4\left(x-1\right)\left(x-\sqrt{2}\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}-2\right)}\)=3x-1
Áp dụng nội suy niu tơn để giải pt sau
\(\frac{2\left(x-\sqrt{2}\right)\left(x-\sqrt{3}\right)}{\left(1-\sqrt{2}\right)\left(1-\sqrt{3}\right)}+\frac{3\left(x-1\right)\left(x-\sqrt{3}\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}-\sqrt{3}\right)}+\frac{4\left(x-1\right)\left(x-\sqrt{2}\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}-\sqrt{2}\right)}=3x-1\)
1. Cho pt: x2 -2(m+1)x+m2=0 (1). Tìm m để pt có 2 nghiệm x1 ; x2 thỏa mãn (x1-m)2 + x2=m+2.
2. Giai pt: \(\left(x-1\right)\sqrt{2\left(x^2+4\right)}=x^2-x-2\)
3. Giai hệ pt: \(\left\{{}\begin{matrix}\frac{1}{\sqrt[]{x}}-\frac{\sqrt{x}}{y}=x^2+xy-2y^2\left(1\right)\\\left(\sqrt{x+3}-\sqrt{y}\right)\left(1+\sqrt{x^2+3x}\right)=3\left(2\right)\end{matrix}\right.\)
4. Giai pt trên tập số nguyên \(x^{2015}=\sqrt{y\left(y+1\right)\left(y+2\right)\left(y+3\right)}+1\)
giải hệ pt :
\(\hept{\begin{cases}3x^2+6xy+9y^2+\left(x+2y\right)^2\sqrt{x+2y}-3\left(x+2y\right)\sqrt{x+2y}-4\left(x+2y\right)+4\sqrt{x+2y}=0\\\left(\frac{\sqrt[3]{x^2-y^2}}{\sqrt[4]{x}}+\sqrt[4]{\frac{x}{y}}\right)^{2017}+\left(\sqrt[3]{\frac{x}{y}}-\sqrt[4]{\frac{y}{x}}\right)^{2018}=1\end{cases}}\)
giải pt :
a, \(\left(2x-6\right)\sqrt{x+4}-\left(x-5\right)\sqrt{2x+3}=3\left(x-1\right)\)
b, \(\left(4x+1\right)\sqrt{x+2}-\left(4x-1\right)\sqrt{x-2}=21\)
c, \(\left(4x+2\right)\sqrt{x+1}-\left(4x-2\right)\sqrt{x-1}=9\)
d, \(\left(2x-4\right)\sqrt{3x-2}+\sqrt{x+3}=5x-7+\sqrt{3x^2+7x-6}\)
giải pt:
a. \(\left(x+4\right)\left(x+1\right)-3\sqrt{x^2+5x+2}=6\)
b, \(\left(x-3\right)\left(x+1\right)+4\left(x-3\right)\sqrt{\frac{x+1}{x-3}}=-3\)
giải pt :a,\(\left(2x+6\right)\sqrt{x+4}-\left(x-5\right)\sqrt{2x+3}=3\left(x-1\right)\)
b, \(\left(4x+1\right)\sqrt{x+2}-\left(4x-1\right)\sqrt{x-2}=21\)
c, \(\left(4x+2\right)\sqrt{x+1}-\left(4x-2\right)\sqrt{x-1}=9\)
d, \(\left(2x-4\right)\sqrt{3x-2}+\sqrt{x+3}=5x-7+\sqrt{3x^2+7x-6}\)