Tính nhanh:
4+22+23+24+....+220
Cho A=4+22+23+24+...+220. Chứng minh rằng A=221
viết B=4+22+23+24+...+220 dưới dạng lũy thừa với cơ số 2.
Đổi 4 thành 2 mũ 2
Thử xem cs đúng ko . Vì mik chữ thầy toán giả thầy toán hết r
Dễ:đổi 4=22
B=22+23+24+...+220
ta có:B=2B-B=(23+24+25+...+221)-(22+23+24+...+220)
= 221-22
Nói trước: đây là mình rút gọn chứ viết mà theo cơ số 2 thì khó quá
tính nhanh : 4/7 x 15/2 x 63/11 x 22/9 x 23/30 x 24/23
giải nhanh giúp mình ạ !!!
Chứng minh rằng A chia hết cho 3 a la 22+23+24+.........219+220
Sửa đề: \(A=2+2^2+2^3+2^4+...+2^{19}+2^{20}\)
=>\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{19}+2^{20}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{19}\left(1+2\right)\)
\(=3\left(2+2^3+...+2^{19}\right)⋮3\)
Tính nhanh: 22 + 23 + 24 + ... + 27 + 28.
22 + 23 + 24 +... + 27 + 28 = (22 + 28) + (23 + 27) + (24 + 26) + 25
= 50 + 50 + 50 + 25 = 175
cho A = 2 + 22 + 23 + 24 +...+ 220. Tìm chữ số tận cùng của A.
A=2+22+23+...+220A=2+22+23+...+220
2A=22+23+24+...+2212A=22+23+24+...+221
2A−A=(22+23+24+...+221)−(2+22+23+...+220)2A−A=(22+23+24+...+221)−(2+22+23+...+220)
A=221−2=24.5+1−2=(24)5.2−2=165.2−2A=221−2=24.5+1−2=(24)5.2−2=165.2−2
A=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯.......6.2−2=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯........2−2=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯...........0A=.......6¯.2−2=........2¯−2=...........0¯
Vậy chữ số tận cùng cả A là 0
Cho A = 2 + 22 + 23 + 24 +... + 219 + 220. Chứng tỏ rằng A chia hết cho 3
A = 2 + 22 + 23 + 24 + ... + 219 + 220
A = (2 + 22) + (23 + 24) +... + (219 + 220)
A = 2.(1+2) + 23.(1 + 2) +... + 219.(l + 2)
A = 2.3 + 23.3 +...+ 219.3 Do đó A chia hết cho 3
do đó A chia hết cho 3
Chứng minh
A = 1 + 2 + 22 + 23 + 24 +…+ 219 + 220.chứng tỏ rằng A chia hết cho 3
kết hợp theo công thức thì số kết thúc phải là 219 hoặc là 221 mới kết hợp được
Đừng có đánh giá người khác như thế chứ ;-;
Chứng minh A = 1 + 2 + 22 + 23 + 24 +…+ 219 + 220.chứng tỏ rằng A chia hết cho 3
A=\((1+2)+\left(2^2+2^3\right)+...+\left(2^{19}+2^{20}\right)\)
A=\(3.1+2^2\left(1+2\right)+...+2^{19}\left(1+2\right)\)
A=\(3.1+3.2^2+...+3.2^{19}\)
A=\(3\left(1+2^2+...+2^{19}\right)\)\(⋮3\)
Vậy A\(⋮3\)
A=(1+2)+(22+23)+...+(219+220)(1+2)+(22+23)+...+(219+220)
A=3.1+22(1+2)+...+219(1+2)3.1+22(1+2)+...+219(1+2)
A=3.1+3.22+...+3.2193.1+3.22+...+3.219
A=3(1+22+...+219)3(1+22+...+219)⋮3⋮3
NÊN A⋮3
Tính nhanh
19 + 18 + 17 + 16 + 14 + 21 + 22 + 23 + 24 + 25 + 26
1/3 + 1/4 + 1/5 + 4/6 + 9/12 + 16/20
\(19+18+17+16+14+21+22+23+24+25+26\)
\(=\left(19+21\right)+\left(18+22\right)+\left(17+23\right)+\left(16+24\right)+\left(14+26\right)+25\)
\(=30+30+30+30+30+25\)
\(=175\)
\(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{4}{6}+\dfrac{9}{12}+\dfrac{16}{20}\)
\(=\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{2}{3}+\dfrac{3}{4}+\dfrac{4}{5}\)
\(=\left(\dfrac{1}{3}+\dfrac{2}{3}\right)+\left(\dfrac{1}{4}+\dfrac{3}{4}\right)+\left(\dfrac{1}{5}+\dfrac{4}{5}\right)\)
\(\text{=}1+1+1\)
\(\text{=}3\)