cho tam giác ABC D LÀ TRUNG ĐIỂM CỦA CẠNH AB E LÀ TRUNG ĐIỂM CỦA CẠNH AC .CHỨNG minh DE //BC và DE bằng 1/2 BC
Cho tam giác ABC có D là trung điểm của cạnh AB và E là trung điểm của cạnh AC. Trên tia DE lấy điểm F sao cho E là trung điểm của đoạn thẳng DF
a) Chứng minh Tam giác AED=tam giác CEF
b) Chứng minh: AB// CF
c) Chứng minh: DE bằng một nữa của BC
cho tam giác abc d là trung điểm của ab e là trung điểm của cạnh ac Chứng minh để // bc và de = 1/2 bc
cho tam giác abc . d là trung điểm của ab . e là trung điểm của cạnh ac.
chứng minh : DE//BC va De =1/2 BC
Cho tam giác ABC, D là trung điểm của cạnh AB, E là trung điểm của cạnh AC. Trên tia đối của tia ED lấy điểm F sao cho EF = ED. Chứng minh rằng:
a) CF = BD và CF // AB.
b) DE // BC và BC = 2. DE.
a) Xét ΔAED và ΔCEF có
EA=EC(E là trung điểm của AC)
\(\widehat{AED}=\widehat{CEF}\)(hai góc đối đỉnh)
ED=EF(gt)
Do đó: ΔAED=ΔCEF(c-g-c)
⇒AD=CF(hai cạnh tương ứng)
mà AD=BD(D là trung điểm của AB)
nên CF=BD(đpcm)
Ta có: ΔAED=ΔCEF(Cmt)
nên \(\widehat{ADE}=\widehat{CFE}\)(hai góc tương ứng)
mà \(\widehat{ADE}\) và \(\widehat{CFE}\) là hai góc ở vị trí so le trong
nên AD//CF(Dấu hiệu nhận biết hai đường thẳng song song)
hay CF//AB(đpcm)
a) Xét ΔAED và ΔCEF có EA=EC(E là trung điểm của AC) ˆ A E D = ˆ C E F (hai góc đối đỉnh) ED=EF(gt) Do đó: ΔAED=ΔCEF(c-g-c) ⇒AD=CF(hai cạnh tương ứng) mà AD=BD(D là trung điểm của AB) nên CF=BD(đpcm) Ta có: ΔAED=ΔCEF(Cmt) nên ˆ A D E = ˆ C F E (hai góc tương ứng) mà ˆ A D E và ˆ C F E là hai góc ở vị trí so le trong nên AD//CF(Dấu hiệu nhận biết hai đường thẳng song song) hay CF//AB(đpcm) a) Xét ΔAED và ΔCEF có EA=EC(E là trung điểm của AC) ˆ A E D = ˆ C E F (hai góc đối đỉnh) ED=EF(gt) Do đó: ΔAED=ΔCEF(c-g-c) ⇒AD=CF(hai cạnh tương ứng) mà AD=BD(D là trung điểm của AB) nên CF=BD(đpcm) Ta có: ΔAED=ΔCEF(Cmt) nên ˆ A D E = ˆ C F E (hai góc tương ứng) mà ˆ A D E và ˆ C F E là hai góc ở vị trí so le trong nên AD//CF(Dấu hiệu nhận biết hai đường thẳng song song) hay CF//AB(đpcm)
Cho tam giác ABC , D và E lần lượt nằm trên các cạnh AB và AC sao cho DE//BC và DE=BC/2 .Đường thẳng qua E song song với AB cắt BC ở M .
a) Chứng minh DE=BM và tam giác ADE=tam giác EMC
b) Chứng minh D là trung điểm cạnh AB.
a: Xét tứ giác BDEM có
DE//BM
BD//EM
Do đó: BDEM là hình bình hành
Suy ra: DE=BM
mà DE=BC/2
nên BM=BC/2
hay M là trung điểm của BC
Xét ΔADE và ΔEMC có
\(\widehat{A}=\widehat{CEM}\)
DE=MC
\(\widehat{ADE}=\widehat{EMC}\)
Do đó: ΔADE=ΔEMC
b: Xét ΔABC có
DE//BC
nên AD/AB=DE/BC
=>AD/AB=1/2
=>AD=1/2AB
hay D là trung điểm của AB
Cho tam giác ABC
a/ Qua D là trung điểm của cạnh AB kẻ DE song song với BC (E thuộc AC) . Chứng minh: EA=EC
b/Nếu D và C lần lượt là trung điểm của AB và AC . Chứng minh: DE song song với BC
Liên Hồng Phúc nó tương tự chứ ko có giống hết
Cho tam giác ABC, D là trung điểm của cạnh AB;E là trung điểm của cạnh AC.Chứng minh DE song song với BC và DE= BC/2
Xét \(\Delta ABC\)có :
D là trung điểm AB
E là trung điểm AC
=> DE là đường trung bình
=> DE // BC , DE \(=\frac{BC}{2}\)
Cho tam giác ABC
a/ Qua D là trung điểm của cạnh AB kẻ DE song song BC (E thuộc AC)
b/ Nếu D và C lần lươt là trung điểm của AB và AC . Chứng minh: DE song song BC
Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD = AE. AM cắt DE tại H Chứng minh rằng: a) A AMNB =A AMC và suy ra AM L BC. b) A AHD = A AHE và DE || BC. c) Gọi I là trung điểm của EC. Tia MI cắt tia DE tại K. Chứng minh CK || ME
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông góc BC
b: Xét ΔADH và ΔAEH có
AD=AE
góc DAH=góc EAH
AH chung
=>ΔADH=ΔAEH
Xét ΔABC có AD/AB=AE/AC
nên DE//BC