a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông góc BC
b: Xét ΔADH và ΔAEH có
AD=AE
góc DAH=góc EAH
AH chung
=>ΔADH=ΔAEH
Xét ΔABC có AD/AB=AE/AC
nên DE//BC
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông góc BC
b: Xét ΔADH và ΔAEH có
AD=AE
góc DAH=góc EAH
AH chung
=>ΔADH=ΔAEH
Xét ΔABC có AD/AB=AE/AC
nên DE//BC
Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh AC lấy điểm D sao cho AB = AD. Trên tia đối của tia AB lấy điểm E sao cho AC = AE a) chứng minh tam giác ABC = tam giác ADE b) gọi M , N lần lượt là trung điểm của BC và DE , chứng minh AM = AN c) tính số đo của góc MAN
bài 10 Cho tam giác ABC cân tại A . Trên cạnh BC lấy các điểm BC lấy điểm D và E sao cho : BD=DE=EC. Gọi M là trung điểm của DE . 1) chứng minh AM vuông góc BC . 2) So sánh các độ dài AB,AD,AE,AC
Cho tam giác ABC vuông tại A, trên cạnh BC lấy điểm D sao cho BD=AB. Qua D kẻ đường thẳng vuông góc với BC, cắt cạnh AC tại E.
a) Chứng minh: tam giác BAE = tam giác BDE. Suy ra: AE = ED.
b) Gọi F là giao điểm của tia DE và tia BA. Chứng minh: tam giác FEC cân.
c) Gọi K là trung điểm của FC. Chứng minh: B, E, K thẳng hàng.
cho tam giác ABC ( AB<AC) , trên cạnh Bc lấy điểm E ( E không trùng với B và C ) . gọi I là trung điểm của Ae. đường thẳng đi qua và song song với BC cắt tia BI tại M
a/ chứng minh rằng am=be
b/ trên tia đối của tia IC lấy điểm N sao cho In=IC . Chứng minh rằng AN // Ec và ba điểm M,A,N thẳng hàng
c/ Quá I kẻ đường thẳng vuông góc với NC , cắt đường thẳng Mn tại F . Chứng minh rằng Cn là tai phân giác của góc BCF
Bài 2. Cho D ABC cân tại A. Phân giác AM (M Î BC), Vẽ BH ^ AC (H Î AC), CK ^ AB (K Î AB).
a. Chứng minh rằng D AMB = D AMC.
b. Chứng minh rằng BH = CK.
Bài 3. Cho tam giác ABC, điểm D thuộc cạnh BC. Gọi M là trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME = MB. Trên tia đối của tia MC lấy F sao cho MF = MC. Chứng minh:
a) AE = BD;
b) AF // BC.
c) Ba điểm A, E, F thẳng hàng.
Bài 4. Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC. Tia phân giác của góc HAB cắt BC tại E, tia phân giác của góc HAC cắt BC tại D. Chứng minh rằng AB+AC=BC+DE.
Cho tam giác ABC Gọi M là trung điểm của AC Trên tia đối MB lấy điểm D sao cho MD = MB a chứng minh tam giác ABM bằng tam giác CD m b Chứng minh AB = CD c Gọi N là trung điểm của BC kéo dài BC cắt AC tại E Chứng minh C là trung điểm của De D trên tia đối tia CA lấy F sao cho CF = cm Gọi O là trung điểm của m chứng minh b o F thẳng hàng
Cho tam giác ABC có AB =AC . Gọi
M là trưng điểm của BC
a) chứng minh tam giác ABM = tam giác ACM
b) trên cạnh AM lấy điểm K bất kì . Chứng minh KB =KC
c) Tia BK cắt cạnh AC tại F , tia CK cắt cạnh AB tại E . Chứng minh EF// CB
Cho tam giác ABC vuông tại A. Gọi D là điểm thuộc cạnh BC sao cho BD = BA và H là trung điểm của AD. Tia BH cắt AC tại E. Tia DE cắt tia BA tại M.
a) Chứng minh rằng: và tam giác AED cân.
b) Chứng minh: EM>ED c) Qua điểm D kẻ đường thẳng song song với BE cắt AC tại F. Gọi K là giao điểm của DE và HF. Chứng minh rằng KD = 2KE.
Cho tam giác ABC vuông tại A có phân giác BD ( D thuộc AC). Trên cạnh BC lấy điểm E sao cho AE = BE. Trên tia đối của tia AB lấy điểm F sao cho AF = EC. Gọi I là giao điểm của BD và FC. Chứng minh rằng:
a) Tam giác ABD = Tam giác EBD
b) DE vuông góc với BC
c) BD là trung trực của đoạn thẳng AE
d) Ba điểm D , E , F thẳng hàng
e) Điểm D cách đều ba cạnh của tam giác AEI