Cho tam giác ABC vuông tại A. Gọi D là điểm thuộc cạnh BC sao cho BD = BA và H là trung điểm của AD. Tia BH cắt AC tại E. Tia DE cắt tia BA tại M.
a) Chứng minh rằng: và tam giác AED cân.
b) Chứng minh: EM>ED c) Qua điểm D kẻ đường thẳng song song với BE cắt AC tại F. Gọi K là giao điểm của DE và HF. Chứng minh rằng KD = 2KE.
a: ΔBAD cân tại B
mà BH là trung tuyến
nên BH là phân giác của góc ABD
Xét ΔBAE và ΔBDE có
BA=BD
góc ABE=góc DBE
BE chung
=>ΔBAE=ΔBDE
=>EA=ED
b: EA=ED
mà EA<EM
nên ED<EM