Tìm các số nguyên tố n sao cho A = 2n + n2 là số nguyên tố
2. Tìm các số tự nhiên n thoả mãn n2 +3n+2 là số nguyên tố.
3. Tìm các số tự nhiên n sao cho 2n +34 là số chính phương.
4. Chứng minh rằng tổng S = 14 +24 +34 +···+1004 không là số chính phương.
5. Tìm các số nguyên dương a ≤ b ≤ c thoả mãn abc,a+b+c,a+b+c+2 đều là các số nguyên tố
Mik gấp
đặt 2n + 34 = a^2
34 = a^2-n^2
34=(a-n)(a+n)
a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)
=> a-n 1 2
a+n 34 17
Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ
Vậy ....
Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.
=> S= (1004+14).100:2=50 900 ko là SCP
2: A=n^2+3n+2=(n+1)(n+2)
Để A là số nguyên tố thì n+1=1 hoặc n+2=2
=>n=0
Bài 1. Tìm số tự nhiên a nhỏ nhất để a : 7 dư 4; a : 9 dư 5 và a : 15 dư 8.
Bài 2. a) Tìm số tự nhiên n để 16 – 3n là ước của 2n + 1.
b) Tìm số tự nhiên n để n2 + 6n là số nguyên tố.
Bài 3. a) Tìm số nguyên tố p sao cho p + 2; p + 6; p + 8; p + 12; p + 14 cũng là số nguyên tố
b) Tìm số tự nhiên n để các số sau nguyên tố cùng nhau: 4n – 3 và 6n + 1
a) Tìm các stn n sao cho 2n+15 chia hết cho n+3
b) Tìm số nguyên tố p và q sao cho 7p+q va p.q+11 là số nguyên tố
bài 1: tìm số tự nhiên n biết:
2 + 4 + 6 +....+ (2n) = 756
bài 2: tìm số tự nhiên n sao cho p = ( n - 2 )(n2 + n - 5) là số nguyên tố.
Bài 1:
Ta có dãy số 2, 4, 6, ..., 2n là một dãy số chẵn liên tiếp.
Ta có công thức tổng của dãy số chẵn liên tiếp là: S = (a1 + an) * n / 2
Với a1 là số đầu tiên của dãy, an là số cuối cùng của dãy, n là số phần tử của dãy.
Áp dụng công thức trên vào bài toán, ta có:
(2 + 2n) * n / 2 = 756
(2n + 2) * n = 1512
2n^2 + 2n = 1512
2n^2 + 2n - 1512 = 0
Giải phương trình trên, ta được n = 18 hoặc n = -19.
Vì n là số tự nhiên nên n = 18.
Vậy số tự nhiên n cần tìm là 18.
Bài 2:
Ta có p = (n - 2)(n^2 + n - 5)
Để p là số nguyên tố, ta có hai trường hợp:
1. n - 2 = 1 và n^2 + n - 5 = p
2. n - 2 = p và n^2 + n - 5 = 1
Xét trường hợp 1:
n - 2 = 1
=> n = 3
Thay n = 3 vào phương trình n^2 + n - 5 = p, ta có:
3^2 + 3 - 5 = p
9 + 3 - 5 = p
7 = p
Vậy n = 3 và p = 7 là một cặp số nguyên tố thỏa mãn.
Xét trường hợp 2:
n - 2 = p
=> n = p + 2
Thay n = p + 2 vào phương trình n^2 + n - 5 = 1, ta có:
(p + 2)^2 + (p + 2) - 5 = 1
p^2 + 4p + 4 + p + 2 - 5 = 1
p^2 + 5p + 1 = 1
p^2 + 5p = 0
p(p + 5) = 0
p = 0 hoặc p = -5
Vì p là số nguyên tố nên p không thể bằng 0 hoặc âm.
Vậy không có số tự nhiên n thỏa mãn trong trường hợp này.
Vậy số tự nhiên n cần tìm là 3.
Bài 1
...=((2n-2):2+1):2=756
(2(n-1):2+1)=756×2
n-1+1=1512
n=1512
Bài 2
\(\left(n-2\right)\left(n^2+n-5\right)\) là số nguyên tố khi n-2=1, suy ra n=3.
tìm số nguyên tố P sao cho:
a) P+10 và P+ 20 đều là các số nguyên tố
b)Tìm số tự nhiên n sao cho : 4n+5 chia cho 2n+1
Xét p = 2 => p + 10 = 12 không là số nguyên tố
Xét p = 3 => p + 10 = 13 là số nguyên tố, p + 20 = 23 là số nguyên tố.
=> Chôn p = 3.
Xét p > 3 mà p là số nguyên tố => p có dạng p = 3k + 1 hoặc p = 3k + 2
+ Nếu p = 3k + 1 => p + 20 = 3k + 21 = 3(k +7) chia hết cho 3
Mà p > 3 => p + 20 không là số nguyên tố (vô lý)
+ Nếu p = 3k + 2 => p + 10 = 3k + 12 = 3(k + 4) chia hết cho 3
Mà p >3 => p + 10 không là số nguyên tố (vô lý)
Vậy p =3
b) Có 4n+5 chia hết cho 2n+1
=>2(n+1)+3 chia hết cho 2n+1
=>2n+1 thuộc Ư(3)={1;3}
Với 2n+1=1 =>n=0
Với 2n+1=3 =>n=1
Vì đề bài là tìm số tự nhiên n nên 3 chỉ có 2 ước thôi nha
a, p là số nguyên tố
+ xét p = 2 => p + 10 = 2 + 10 = 12 là hợp số
=> p = 2 (loại)
+ xét p= 3 => p + 10 = 3 + 13 = 13 thuộc P
p + 20 = 3 + 20 = 23 thuộc P
=> p = 3 (nhận)
+ p là số nguyên tố và p > 3
=> p = 3k + 1 hoặc p = 3k + 2
xét p = 3k + 1 => p + 20 = 3k + 1 + 20 = 3k + 21 = 3(k + 7) là hợp số
=> p = 3k + 1 loaị
+ xét p = 3k + 2 => p + 10 = 3k + 2 + 10 = 3k + 12 = 3(k + 4) là hợp số
=> p = 3k + 2 loại
vậy p = 3
b, 4n + 5 chia hết cho 2n + 1
=> 4n + 2 + 3 chia hết cho 2n + 1
=> 2(2n + 1) + 3 chia hết cho 2n + 1
=> 3 chia hết cho 2n + 1
xét ư(3) là ok nhé
tìm n để A=(n-1) (n2+2n+3) là số nguyên tố
Để \(\left(n-1\right)\left(n^2+2n+3\right)\) là số nguyên tố <=> \(n-1=1\) hoặc \(n^2+2n+3=1\)
TH1 : \(n-1=1\Rightarrow n=2\)
\(\Rightarrow\left(n-1\right)\left(n^2+2n+3\right)=\left(2-1\right)\left(2^2+2.2+3\right)=11\)là số nguyên tố (TM)
TH2 : \(n^2+2n+3=1\)
\(\Leftrightarrow\left(n^2+2n+1\right)+2=1\Leftrightarrow\left(n+1\right)^2+2=1\Rightarrow\left(n+1\right)^2=-1\) (loại vì \(\left(n+1\right)^2\ge0\) )
Vậy n = 2 thì \(\left(n-1\right)\left(n^2+2n+3\right)\)là số nguyên tố
a) Tìm số tự nhiên n sao cho 4n + 7 chia hết cho 2n + 1 b) Tìm số nguyên tố P sao cho P + 8 và P + 16 cũng là số nguyên tố
a) 4n + 7 chia hết cho 2n + 1
⇒ 4n + 2 + 5 chia hết cho 2n + 1
⇒ 2(2n + 1) + 5 chia hết cho 2n + 1
⇒ 5 chia hết cho 2n + 1
⇒ 2n + 1 ∈ Ư(5) (ước dương)
⇒ 2n + 1 ∈ {1; 5}
⇒ n ∈ {0; 2}
Tìm n sao cho:
a. n, n+10, n+14 là số nguyên tố.
b. n, n+4, n+14 là số nguyên tố.
c. n, 2n+1n 4n+1 là số nguyên tố.
d. n, \(8n^2+1\) là số nguyên tố.
Câu 1 :a. Tìm n để n2+ 2006 là một số chính phương
b. Cho n là số nguyên tố lớn hơn 3 . Hỏi n2 là 2006 là số nguyên tố hay hợp số .
Câu 2 : Tìm tất cả các số tự nhiên có 3 chữ số abc sao cho abc = n2 - 1 và cba = ( n-2 ).2
Bạn nào trả lời giúp mình đi
Tham khảo câu hỏi tương tự nhé bạn .
Tick tớ đc chứ
tìm số nguyên tố p sao cho p+2;p+4 cũng là số nguyên tố
tìm STN n để 4n+3 và 2n+3 là số nguyên tố cùng nhau