Tìm giá trị nhỏ nhất của biểu thức B=25x^2+3y^2-10y+11
Tìm giá trị nhỏ nhất của biểu thức: A=25x2 + 3y2 - 10x + 11
A=\(25x^2+3y^2-10x+11=\)\(\left(5x\right)^2-2.5.x+1^2+3y^2+10=\)\(\left(5x+1\right)^2+3y^2+10\ge10\)
(Vì\(\left(5x+1\right)^2\ge0\forall x\),\(3y^2\ge0\forall y\))
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{-1}{5},y=0\)
Vậy A max=10\(\Leftrightarrow x=\frac{-1}{5},y=0\)
1) Tìm giá trị nhỏ nhất của biểu thức:
\(A= 25x^2+3y^2-10x+11\)
2) Tìm giá trị lớn nhất của biểu thức:
\(B=19-6x-9x^2\)
làm hộ em với ạ.
tìm giá trị nhỏ nhất của các biểu thức sau
a,A=25x2+3y2-10y=11
b,B=(2x-1)2+(x+2)2
c,(x-3)2+(x-11)2
a) Sửa đề \(A=25x^2+3y^2-10x+11\)
\(A=25x^2-10x+1+3y^2+10\)
\(A=\left(5x-1\right)^2+3y^2+10\)
Vì \(\left(5x-1\right)^2\ge0\) với mọi x
\(3y^2\ge0\) với mọi y
\(\Rightarrow\left(5x-1\right)^2+3y^2\ge0\) với mọi x,y
\(\Rightarrow\left(5x-1\right)^2+3y^2+10\ge10\)
Amin = 10
\(\Leftrightarrow5x-1=0\) và \(3y^2=0\)
\(\Rightarrow5x=1\) và \(y^2=0\)
\(\Rightarrow x=\dfrac{1}{5}\) và \(y=0\)
Vậy Amin = 10 <=> x = 1/5 và y = 0
b) \(B=\left(2x-1\right)^2+\left(x+2\right)^2\)
\(\Rightarrow B=4x^2-4x+1+x^2+4x+4\)
\(\Rightarrow B=5x^2+5\)
Vì \(5x^2\ge0\) với mọi x
\(\Rightarrow5x^2+5\ge5\)
=> Bmin = 5
<=> 5x2 = 0
=> x2 = 0
=> x = 0
Vậy Bmin = 5 <=> x = 0
c) \(C=\left(x-3\right)^2+\left(x-11\right)^2\)
\(C=x^2-6x+9+x^2-22x+121\)
\(C=2x^2-28x+130\)
\(C=2\left(x^2-14x+65\right)\)
\(C=2\left(x^2-2.x.7+7^2+16\right)\)
\(C=2\left(x-7\right)^2+16.2\)
\(C=2\left(x-7\right)^2+32\)
Vì \(2\left(x-7\right)^2\ge0\) với mọi x
=> \(2\left(x-7\right)^2+32\ge32\)
=> Cmin = 32
<=> x - 7 = 0 => x = 7
Vậy Cmin = 32 <=> x = 7
giá trị nhỏ nhất của biểu thức 25x^2+3y^2-10x+3y+4
TL
3y2+3y+25x2-10x+4
HT
TL:
3y2 + 3y + 25x2 - 10x + 4
~HT~
= 25x2 - 10x + 1 + 3y2 + 3y + \(\frac{3}{4}\)+ \(\frac{9}{4}\)
= (5x - 1)2 + 3(y + \(\frac{1}{2}\))2 + \(\frac{9}{4}\)> \(\frac{9}{4}\) (Vì (5x - 1)2 >= 0 với mọi x; 3(y + \(\frac{1}{2}\))2 >= 0 với mọi y)
Dấu '=' xảy ra khi
5x - 1 = 0 và y+ \(\frac{1}{2}\) = 0
x = \(\frac{1}{5}\) và y = \(-\frac{1}{2}\)
Vậy ......
(Nếu sai thì mình xin lỗi)
Tìm giá trị nhỏ nhất của biểu thức :
a/ A = 25x2 + 3y2 - 10x + 11;
b/ B = ( x - 3 )2 + ( x - 11 )2
c/ C = ( x + 1 ) ( x - 3 ) ( x - 6 )
Bài 1:Tìm giá trị nhỏ nhất của biểu thức:
B=y^2-5y+8
C=2x^2-2x+2
Bài 2:Tìm giá trị lớn nhất của biểu thức
D=10y-5y^2-3
1/Rút gọn biểu thức sau : (a+b)2+(a-b)3-6ab2
2/Tìm giá trị nhỏ nhất của biểu thức sau:
a,A=x2+y2-2x-4y+6
b,B=2x2+8x+10
c,C=25x2+3y2-10x+11
d,D=(x-3)2+(x-11)2
1/
( a + b )3 + ( a - b )3 - 6ab2 < đã sửa >
= a3 + 3a2b + 3ab2 + b3 + a3 - 3a2b + 3ab2 - b3 - 6ab2
= 2a3
2/
A = x2 + y2 - 2x - 4y + 6 = ( x2 - 2x + 1 ) + ( y2 - 4y + 4 ) + 1 = ( x - 1 )2 + ( y - 2 )2 + 1 ≥ 1 ∀ x, y
Dấu "=" xảy ra khi x = 1 ; y = 2
=> MinA = 1 <=> x = 1 ; y = 2
B = 2x2 + 8x + 10 = 2( x2 + 4x + 4 ) + 2 = 2( x + 2 )2 + 2 ≥ 2 ∀ x
Dấu "=" xảy ra khi x = -2
=> MinB = 2 <=> x = -2
C = 25x2 + 3y2 - 10x + 11 = ( 25x2 - 10x + 1 ) + 3y2 + 10 = ( 5x - 1 )2 + 3y2 + 10 ≥ 10 ∀ x, y
Dấu "=" xảy ra khi x = 1/5 ; y = 0
=> MinC = 10 <=> x = 1/5 ; y = 0
D = ( x - 3 )2 + ( x - 11 )2
Đặt t = x - 7
D = ( t + 4 )2 + ( t - 4 )2
= t2 + 8t + 16 + t2 - 8t + 16
= t2 + 32 ≥ 32 ∀ t
Dấu "=" xảy ra khi t = 0
=> x - 7 = 0 => x = 7
=> MinD = 32 <=> x = 7
Cảm ơn bn nhiều nhé!
Bài 1:
\(\left(a+b\right)^3+\left(a-b\right)^3-6ab^2\)
\(=2a\left(a^2+2ab+b^2-a^2+b^2+a^2-2ab+b^2\right)-6ab^2\)
\(=2a\left(a^2+3b^2\right)-6ab^2\)
\(=2a^3+6ab^2-6ab^2\)
\(=2a^3\)
Bài 2:
\(A=x^2+y^2-2x-4y+6\)
\(=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)
\(=\left(x-1\right)^2+\left(y-2\right)^2+1\ge1\forall x,y\)
Dấu"=" xảy ra khi \(\hept{\begin{cases}x-1=0\\y-2=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}}\)
Vậy...
\(B=2x^2+8x+10\)
\(=2\left(x^2+4x+4\right)+2\)
\(=2\left(x+2\right)^2+2\ge2\forall x\)
Dấu"="xảy ra khi \(x+2=0\Leftrightarrow x=-2\)
Vậy...
tìm giá trị nhỏ nhất của biểu thức :
B= -x^2 + 2xy -4y^2 + 2x + 10y -8
Tìm giá trị nhỏ nhất của phân thức sau:
\(\frac{3y^2}{-25x^2+20xy-5y^2}\)
\(\frac{3y^2}{-25x^2+20xy-5y^2}\)=\(\frac{3y^2}{-\left(25x^2-2\cdot5x\cdot2y+4y^2\right)-y^2}\)=\(\frac{3y^2}{-\left(5x-2y\right)^2-y^2}\)với x; y ko đồng thời bằng 0
Do \(\text{-(5x-2y)}^2\) \(\le\)0 với mọi x;y \(\Rightarrow\)-(5x-2y)\(^2\)-y\(^2\)\(\le\)-y\(^2\)\(\Rightarrow\)\(\frac{3y^2}{-\left(5x-2y\right)^2-y^2}\)\(\ge\)-3
Đẳng thức xảy ra\(\leftrightarrow\)5x=2y và x\(\ne\)0;y\(\ne\)0
thank bạn nhiều nha vậy là do mình tách sai rồi mình lại để x ra ngoài ở mẫu chứ ko phải y nên ko ra là 5x=2y thank nhiều nhé