a) Sửa đề \(A=25x^2+3y^2-10x+11\)
\(A=25x^2-10x+1+3y^2+10\)
\(A=\left(5x-1\right)^2+3y^2+10\)
Vì \(\left(5x-1\right)^2\ge0\) với mọi x
\(3y^2\ge0\) với mọi y
\(\Rightarrow\left(5x-1\right)^2+3y^2\ge0\) với mọi x,y
\(\Rightarrow\left(5x-1\right)^2+3y^2+10\ge10\)
Amin = 10
\(\Leftrightarrow5x-1=0\) và \(3y^2=0\)
\(\Rightarrow5x=1\) và \(y^2=0\)
\(\Rightarrow x=\dfrac{1}{5}\) và \(y=0\)
Vậy Amin = 10 <=> x = 1/5 và y = 0
b) \(B=\left(2x-1\right)^2+\left(x+2\right)^2\)
\(\Rightarrow B=4x^2-4x+1+x^2+4x+4\)
\(\Rightarrow B=5x^2+5\)
Vì \(5x^2\ge0\) với mọi x
\(\Rightarrow5x^2+5\ge5\)
=> Bmin = 5
<=> 5x2 = 0
=> x2 = 0
=> x = 0
Vậy Bmin = 5 <=> x = 0
c) \(C=\left(x-3\right)^2+\left(x-11\right)^2\)
\(C=x^2-6x+9+x^2-22x+121\)
\(C=2x^2-28x+130\)
\(C=2\left(x^2-14x+65\right)\)
\(C=2\left(x^2-2.x.7+7^2+16\right)\)
\(C=2\left(x-7\right)^2+16.2\)
\(C=2\left(x-7\right)^2+32\)
Vì \(2\left(x-7\right)^2\ge0\) với mọi x
=> \(2\left(x-7\right)^2+32\ge32\)
=> Cmin = 32
<=> x - 7 = 0 => x = 7
Vậy Cmin = 32 <=> x = 7