Tìm các tiệm cận : \(y=\sqrt{x^2+2x-5}\)
Tìm các đường tiệm cận
\(y=\dfrac{\sqrt{-3x^2+2x+1}}{x}\)
Căn thức xác định khi \(-\dfrac{1}{3}\le x\le1\)
Do miền xác định này ko chứa vô cực nên hàm không có tiệm cận ngang
\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{-3x^2+2x+1}}{x}=\dfrac{1}{0}=\infty\Rightarrow x=0\) là tiệm cận đứng
45. Tìm tất cả các đường tiệm cận ngang của đồ thi hs y = \(x.\left(\sqrt{x^2+2x}+x-2.\sqrt{x^2+x}\right)\)
45. Tìm tất cả các đường tiệm cận ngang của đồ thị hàm số y = \(x.\left(\sqrt{x^2+2x}+x-2\sqrt{x^2+x}\right)\)
Mọi người ơi cho mình hỏi bài này với ạ
1.Số đường tiệm cận của hàm số y=\(\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}\) là
2.Tìm tất cả các tiệm cận đứng của đồ thị hàm số y=\(\dfrac{2x-1-\sqrt{x^2+x+3}}{x^2-5x+6}\)
Mình cảm ơn mọi người nhiều lắm !!!!!
1.
Điều kiện xác định của căn thức: \(\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}=\dfrac{1-1}{1}=0\Rightarrow y=0\) là 1 TCN
\(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}=\dfrac{-1-1}{-1}=2\Rightarrow y=2\) là 1 TCN
\(\lim\limits_{x\rightarrow-5}\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}=\dfrac{\sqrt{26}+5}{0}=+\infty\Rightarrow x=-5\) là 1 TCĐ
\(\lim\limits_{x\rightarrow5}\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}=\dfrac{\sqrt{26}-5}{0}=+\infty\Rightarrow x=5\) là 1 TCĐ
Hàm có 4 tiệm cận
2.
Căn thức của hàm luôn xác định
Ta có:
\(\lim\limits_{x\rightarrow2}\dfrac{2x-1-\sqrt{x^2+x+3}}{x^2-5x+6}=\lim\limits_{x\rightarrow2}\dfrac{\left(2x-1\right)^2-\left(x^2+x+3\right)}{\left(x-2\right)\left(x-3\right)\left(2x-1+\sqrt{x^2+x+3}\right)}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(3x+1\right)}{\left(x-2\right)\left(x-3\right)\left(2x-1+\sqrt{x^2+x+3}\right)}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{3x+1}{\left(x-3\right)\left(2x-1+\sqrt{x^2+x+3}\right)}=\dfrac{-7}{6}\) hữu hạn
\(\Rightarrow x=2\) ko phải TCĐ
\(\lim\limits_{x\rightarrow3}\dfrac{2x-1-\sqrt{x^2+x+3}}{x^2-5x+6}=\dfrac{5-\sqrt{15}}{0}=+\infty\)
\(\Rightarrow x=3\) là tiệm cận đứng duy nhất
xác định đường tiệm cận ngang của đồ thị hàm số sau
a) \(y=\dfrac{\sqrt{9x^2+x}+x}{2x+5}\)
b) \(y=\dfrac{\sqrt{2x^2+1}-x}{x+2}\)
a: \(\lim\limits_{x\rightarrow+\infty}y=\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{9x^2+x}+x}{2x+5}\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{9+\dfrac{1}{x}}+1}{2+\dfrac{5}{x}}=\dfrac{\sqrt{9}+1}{2}=\dfrac{3+1}{2}=2\)
=>Đường thẳng y=2 là tiệm cận ngang của đồ thị hàm số \(y=\dfrac{\sqrt{9x^2+x}+x}{2x+5}\)
\(\lim\limits_{x\rightarrow-\infty}y=\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{9x^2+x}+x}{2x+5}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{-\sqrt{9+\dfrac{1}{x}}+1}{2+\dfrac{5}{x}}=\dfrac{-3+1}{2}=\dfrac{-2}{2}=-1\)
=>Đường thẳng y=-1 là tiệm cận ngang của đồ thị hàm số \(y=\dfrac{\sqrt{9x^2+x}+x}{2x+5}\)
b: \(\lim\limits_{x\rightarrow+\infty}y=\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{2x^2+1}-x}{x+2}\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{2+\dfrac{1}{x^2}}-1}{1+\dfrac{2}{x}}=\dfrac{\sqrt{2}-1}{1}=\sqrt{2}-1\)
=>Đường thẳng \(y=\sqrt{2}-1\) là tiệm cận ngang của đồ thị hàm số \(y=\dfrac{\sqrt{2x^2+1}-x}{x+2}\)
\(\lim\limits_{x\rightarrow-\infty}y=\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{2x^2+1}-x}{x+2}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{-\sqrt{2+\dfrac{1}{x^2}}-1}{1+\dfrac{2}{x}}=\dfrac{-\sqrt{2}-1}{1}=-\sqrt{2}-1\)
=>Đường thẳng \(y=-\sqrt{2}-1\) là một tiệm cận ngang của đồ thị hàm số \(y=\dfrac{\sqrt{2x^2+1}-x}{x+2}\)
Nêu cách tìm ra tiệm cận ngang và tiệm cận dứng của đồ thị hàm số. Áp dụng để tìm các tiệm cận của đồ thị hàm số: Áp dụng để tìm các tiệm cận của đồ thị hàm số y = 2 x + 3 2 - x
- Cách tìm tiệm cận ngang:
+ Tính các giới hạn
+ Nếu hoặc thì y = y o là tiệm cận ngang của đồ thị hàm số.
- Cách tìm tiệm cận đứng:
Đường thẳng x = x o là tiệm cận đứng của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:
tìm m thỏa mãn yêu cầu bài toán
a) đồ thị hàm số \(y=\dfrac{mx-1}{2x+m}\) có đường tiệm cận đứng đi qua điểm A (-1;\(\sqrt{2}\))
b) đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{x-2}{2x-m}\)
c) biết đồ thị hàm số \(y=\dfrac{\left(m+1\right)x+2}{x-n+1}\) nhận trục hoành và trục tung làm 2 đường tiệm cận. Tính m+n
d) đồ thị hàm số \(y=\dfrac{x-1}{x^2+2\left(m-1\right)x+m^2-2}\) có 2 đường tiệm cận đứng
a: \(\lim\limits_{x\rightarrow+\infty}\dfrac{mx-1}{2x+m}=\lim\limits_{x\rightarrow+\infty}\dfrac{m-\dfrac{1}{x}}{2+\dfrac{m}{x}}=\dfrac{m}{2}\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{mx-1}{2x+m}=\lim\limits_{x\rightarrow-\infty}\dfrac{m-\dfrac{1}{x}}{2+\dfrac{m}{x}}=\dfrac{m}{2}\)
Vậy: x=m/2 là tiệm cận đứng duy nhất của đồ thị hàm số \(y=\dfrac{mx-1}{2x+m}\)
Để x=m/2 đi qua \(A\left(-1;\sqrt{2}\right)\) thì \(\dfrac{m}{2}=-1\)
=>\(m=-1\cdot2=-2\)
b: \(\lim\limits_{x\rightarrow-\infty}\dfrac{x-2}{2x-m}=\lim\limits_{x\rightarrow-\infty}\dfrac{1-\dfrac{2}{x}}{2-\dfrac{m}{x}}=\dfrac{1}{2}\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{x-2}{2x-m}=\lim\limits_{x\rightarrow+\infty}\dfrac{1-\dfrac{2}{x}}{2-\dfrac{m}{x}}=\dfrac{1}{2}\)
=>x=1/2 là tiệm cận đứng duy nhất của đồ thị hàm số \(y=\dfrac{x-2}{2x-m}\)
=>Không có giá trị nào của m để đường thẳng x=1 là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{x-2}{2x-m}\)
Nêu cách tìm tiệm cận ngang và tiệm cận đứng của đồ thị hàm số. Áp dụng để tìm các đường tiệm cận của hàm số :
\(y=\dfrac{2x+3}{2-x}\)
tìm tiệm cận
\(y=\sqrt{x+\sqrt{x^2+x-1}}\)
Hàm không có tiệm cận đứng
Hàm không xác định khi \(x\rightarrow-\infty\)
\(\lim\limits_{x\rightarrow+\infty}\sqrt{x+\sqrt{x^2+x-1}}=+\infty\) ko hữu hạn
\(\Rightarrow\)Đồ thị hàm số không có tiệm cận