Căn thức xác định khi \(-\dfrac{1}{3}\le x\le1\)
Do miền xác định này ko chứa vô cực nên hàm không có tiệm cận ngang
\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{-3x^2+2x+1}}{x}=\dfrac{1}{0}=\infty\Rightarrow x=0\) là tiệm cận đứng
Căn thức xác định khi \(-\dfrac{1}{3}\le x\le1\)
Do miền xác định này ko chứa vô cực nên hàm không có tiệm cận ngang
\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{-3x^2+2x+1}}{x}=\dfrac{1}{0}=\infty\Rightarrow x=0\) là tiệm cận đứng
26. Tìm số đường tiệm cận ngang và số đường tiệm cận đứng của đồ thị hàm số y = \(\dfrac{\sqrt{x-1}}{x^2-3x+2}\)
tìm đường tiệm cận
\(y=\dfrac{\sqrt{4x^2-1}+3x^2+2}{x^2-x}\)
Mọi người ơi cho mình hỏi bài này với ạ
1.Số đường tiệm cận của hàm số y=\(\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}\) là
2.Tìm tất cả các tiệm cận đứng của đồ thị hàm số y=\(\dfrac{2x-1-\sqrt{x^2+x+3}}{x^2-5x+6}\)
Mình cảm ơn mọi người nhiều lắm !!!!!
\(y=\dfrac{\sqrt{\left(x-1\right)\left(x^2+3x+3\right)}}{mx^2+2x-3}\) có 3 đường tiệm cận
Nêu cách tìm tiệm cận ngang và tiệm cận đứng của đồ thị hàm số. Áp dụng để tìm các đường tiệm cận của hàm số :
\(y=\dfrac{2x+3}{2-x}\)
Tìm các tiệm cận đứng và tiệm cận ngang của đồ thị hàm số:
a) \(y=\dfrac{2-x}{9-x^2}\)
b) \(y=\dfrac{x^2+x+1}{3-2x-5x^2}\)
c) \(y=\dfrac{x^2-3x+2}{x+1}\)
d) \(y=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
45. Tìm tất cả các đường tiệm cận ngang của đồ thi hs y = \(x.\left(\sqrt{x^2+2x}+x-2.\sqrt{x^2+x}\right)\)
45. Tìm tất cả các đường tiệm cận ngang của đồ thị hàm số y = \(x.\left(\sqrt{x^2+2x}+x-2\sqrt{x^2+x}\right)\)
25. Với m là tham số bất kỳ , đồ thị hs y= \(\dfrac{x+1}{\left(m^2+1\right).\sqrt{x^2-4}}\) có tất cả bao nhiêu đường tiệm cận ( tiệm cận ngang và tiệm cận đứng)